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M. H. Ingraham [l]1 has developed an algorithm for the solution

of the unilateral matrix equation Zï-o RiX{ = 0, where the coeffi-

cients Ri (t = 0, 1, 2, • • • , ») are «X« matrices with elements in a

field J of characteristic zero. It is the purpose of this note to extend

his algorithm to include the unilateral equation in which the coeffi-

cients are mXn matrices. It is shown that the solution in this case is

easily reduced to the solution of an equation with «X« matrix coeffi-

cients. If in particular m<n, it is shown that if the equation has one

solution it has an infinitude of solutions.

Ingraham's algorithm is based upon the following facts:

(1). The matrix X is a solution of Zî-o RiX' = 0 if and only if the

canonical triangular form (c.t.f.)2 A of A — X (A = XPlXn where X is a

commutative indeterminate) is a right divisor of the c.t.f. P(A) of

Zí=o -R<A\ (In the remainder of this paper we shall use R(X) to

represent Z*=o R<X*, R(A) to represent Zï-o RiA*, and so forth.)

(2). The problem of factoring P(A) = Q(A)A(A) is reduced to

solving equations of the type pw-qußn, qnaij=pij — Zi-i+i iuo-u

mod a¡¡, and qji = a¡i = 0 (j>i, i=l, 2, • • • , n), where the elements

an are so chosen that the degree of JJj_ j ai( is less than or equal to j,

and the degree of Ylí- i an is equal to «.

(3). The necessary and sufficient condition that A(X) = Z*-o AiA1

be the c.t.f. of a matrix A — X is that Wi = (A„ A,-U • • ■ , Ai) be

of rank « [3].

Since X is of necessity square of order «, fact 3 is still valid. The

first fact is based upon a factor theorem, namely, X is a solution of

R(X)=0 if and only if R(A)=S(A)(A-X). The dimensions of the
coefficients do not affect this factor theorem. However, steps 1 and 2

involve the concept of the c.t.f. of R(A) and must be reconsidered.

The cases m > n and m < n will be treated separately.

Case I. m>n. Let
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1 Numbers in brackets refer to the bibliography at the end of the paper.

2 The canonical triangular form of a matrix with elements in ^[x] is a matrix with

zeros below the main diagonal. The main diagonal elements are monic polynomials or

zero. If a main diagonal element is zero, the row in which it occurs consists entirely

of zeros. The elements of any column are reduced modulo the main diagonal element

of that column.
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P(A)
iPi   \m><B"U )   '

Proceeding in the same manner as is used to find the c.t.f. of a square

matrix,3 it may be shown that there is a unimodular matrix Umxm

such that

UR(A)
(pnxn\mxn

o      )      '

where P is unique and is in canonical triangular form. If X is a solu-

tion of R(X) =0, it follows that

VW-{£    )(A-X)-(o)=(o     )a.

where A is the c.t.f. of A — X. Likewise, if P = QA, it follows that

and the following theorem is true.

Theorem 1. If m>n, X is a solution of R(X) =0 if and only if X

is a solution of P(X) =0 where P(X) has nXn matrices as coefficients.

Let P„(A) be an »X« matrix formed by using » rows of P(A).

Lemma 1. If R(X) =0 has a solution and if | P„(A)| is considered

for all possible choices of the n rows, then these determinants must have a

common factor of degree ».

Proof. Since R(A)=S(A)(A-X), it follows that P„(A) = 5„(A)
(A-X), and

|P»(A)| - |S»(A)| • |A-X|.

This result is given by Roth [4] in the case that J is the complex field.

The proof above is somewhat simpler.

Case II. m<n. Let P(A) = (Pfxm, P2)mxn and form the matrix

R* = (P>   P2\xn

\0     0 /

Theorem 2. The matrix X is a solution of R(X) = 0 if and only if X

3 The canonical triangular form is obtained in the same manner as the Hermite

normal form [2] except that the columns are operated on in reverse order.
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is a solution of R*(X)=0. If there exists one solution of R(X)=0,

there exists an infinitude of solutions.

There exists a unimodular matrix T* such that

/Pli    Pl2\
T*R* = ( ) = P*

\0      P2J

where P* is the c.t.f. of R*, Pu is the c.t.f. of Pi, and P22 = 0 if Pi

is nonsingular.

If X is a solution of R(X)=0, then R(A) = (Pi, P2) = (Si^XA-A-),
and

Also, if

/Si S2\
*•«-(„   0>A-X).

/Pi   P2\     (Bx   B2\

it is easily shown that Bz = 0, Bi = 0, and therefore R(A) = (Pt, P2)
= (Bi,B2)(A-X).

Therefore, X is a solution of R(X) =0 if and only if X is a solution

of the matrix equation R*(X)=0, whose coefficients are «X» ma-

trices. However, since |i?*(A)| =0 it follows that if R*(X)=0 has

a solution, R*(X)=Q and consequently R(X)=Q have an infinite

number of solutions [5].

Theorem 3. // P* is the IXI matrix formed by the first I rows and

I columns of P*, where I is chosen such that puis the last nonzero main

diagonal element of P*, then if P?(X) =0 has a solution, R(X) =0 has

a solution.

Suppose Pl*=Qi(Al-Xl) = QlA\xl where TlAl=(At-Xl) (T, uni-

modular). Let

A,

0     X - ci

0 0 X  —   Cn-l

where the c¡ are arbitrarily selected so that X — c¡ and pa are relatively

prime for all i, j = l, 2, ■ ■ • , n — l, and ait = 0 (i>s). Then Anxn

can be shown to be a right divisor of P*(A) where the elements ait

(i<s, s = 1+1, 1+2, •••,«) will be constants and will be uniquely
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determined in terms of the elements c¡. The matrix Wi connected

with A, since the rank of (Wi)i is /, will be of rank l+n — l = n. That

is, A is the left associate of a matrix of the form A— X, and Xnxn

will be a solution of R(X) =0.

As a special case of the above result, if | Pi| =0 and R(X) =0 has a

solution, there will exist an infinite family of solutions.4

The above results have an immediate application to the solution

of the equation 2X=o AmX(KmXm)=0 where Km= (km,ij)lXn, Am

= (am,ii)TXv, AXB=AXB = (Abij)[2], and 0 is the rtXpn zero

matrix.

In a paper submitted to the Proceedings [ó], it is shown that the

equation Q(X) = ^,0 AmX(KmXm) =0 has a solution if and only if

the unilateral matrix equations XX=o am,ijKmXm = 0 (i=l, 2, • ■ • , r;

j = 1, 2, • • • , p) have a common solution. It is also shown that these

equations, pr in number, may be reduced to an equivalent set of

equations, q in number, equal to the number of linearly independent

(over J) matrices in the set Ao, Au ■ • ■ , A,. That is, if X is a solu-

tion of Q(X)=0, X is a solution of ç = s+l equations of the form

XX-o am,kKmXm = 0 (k = \, 2, • • • , q). Therefore X is a solution of

(1) £ RmX™ = E

where Rm is a tqXn matrix, and 0 is the tqXn zero matrix. Likewise if

X is a solution of (1), X is a solution of Xlm-o AmX(KmXm) =0.

Theorem 4. The unilateral direct product matrix equation 2^^,-0 Am

X(KmXm) =0 has a solution if and only if the equation (1) has a solu-

tion.

The solution of the equation (1) falls into case I or case II accord-

ing as tq>n or tq<n.

Corollary. Iftq<n and there is one solution of £m=o AmX(KmXm)

= 0, there is an infinitude of solutions.
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ON MAGIC SQUARES CONSTRUCTED BY THE
UNIFORM STEP METHOD

T. M. APÓSTOL AND HERBERT S. ZUCKERMAN

An application of the theory of congruences to the study of magic

squares constructed by the uniform step method was first given by

D. N. Lehmer.1 The «2 cells of the square are denoted by two co-

ordinates (.4, B), A being the number of the column counting from

the left and B the number of the row counting from the bottom.

Lehmer summed up the uniform step process in the following con-

gruences for determining the cell (Ax, Bx) into which the number x is

entered :

(1) Ax m p + a(x - 1) + a\- (mod«),

(2) Bx m q + ß(x - 1) + b |--1 (mod n),

where (p, q) is the cell into which the number 1 is entered, (a, ß) is

the "step" used in proceeding from one cell to another, (a, b) is the

"break-step" that must be used when an occupied cell is arrived at,

and the symbol [k] denotes the greatest integer contained in k.

Lehmer proved the following theorems:
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1 D. N. Lehmer, On the congruences connected with certain magic squares, Trans.

Amer. Math. Soc. vol. 31 (1929) pp. 529-551. Definitions of the terms "magic,"

"diabolic," and "symmetric" are given in this paper.


