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We shall consider throughout this paper a function

00

f(z) = ¿2 anzn, ai=l,
n=l

analytic and schlicht in the unit circle. According to a classical con-

jecture of Bieberbach, |a„| g«. Recently Bazilevic has proved that

lim sup«,«, | an\ /n^e/2 [l].1 Our interest lies in the average behavior

of the coefficients.  It is clear that if the conjecture holds,  then

n

|2>;|/C»+i,2ál.
¡=i

More generally, let us define

n-l

Sn(k)   =   XI Ci+k-l,k-ian-j (k  è   1)
)=0

and

<?n(k)   =   I Sn(k) | /Cn+k,k+l-

If \an\ 'è.n, then

n-l

I Sn(k) |   ̂    ¿I Cj+k-l.k-l(n — j)   =  Cn+k,k+l
)'=0

so that (Tn(k) = 1. It is easy to see that the result of Bazilevic implies

that

e
lim sup o-„(k)^ —.

n—>» 2

We prove two theorems concerning the averages <r„(&). Using only

classical results we obtain a bound on lim sup«.^ a„(k) and show that

this bound tends to unity for large k. By applying recent information

concerning the map of the circle \z\ =r<l by the function/(z), we

get estimates on lim sup,,..« on(k) for small k.

Presented to the Society, June 17, 1950; received by the editors August 11, 1950.

1 Numbers in brackets refer to the bibliography at the end of the paper.

658



AVERAGES OF THE COEFFICIENTS OF SCHLICHT FUNCTIONS 659

Theorem 1. Let ¿>1. Then

ek+1T(k + 2)T(k - 1)
limsupcrn(¿)  = - = A(k),

»-*» (k + l)k+12k^T2(k/2)

and lim*..«, .4(¿) = 1.

Proof. We write

(D

Hence

1    f f(z)
Sn(k) =-I -■ dz

2iriJul=r<i z»+\l -z)k

1     r2*        f(rei9)

' 2xr"J0     eine(l"(1 - rei9)>

Sn(k)
i   r2*

= - T1
2irrnJ0        1

I f(reie)

o

f(reie) \    C2T deI J(re") |    r iT
x - I      -¡—-
2i     27rr"     J o

By the well known "Distortion Theorem"

—   max
0s«<2ir ¿lcrn J 0

max   | f(reie) | = - (r < 1).
os«<2x (1 — r)2

To estimate the integral expression we write

|l-re<9| =(l-2rcosö + r2)1/2,

so that [2]

í r2r      de                 i         r2r       (l - O*'2
—      -p--r- =--— de
2tJo     \l-reie\k       2tt(1 - r2)k'2Jo    (1 - 2r cos 6 + r2)*'2

= (l-r2)-*'2P*/2_i|T—¡|.

Here P„(l) is the Legendre function of the first kind of order w.

Since lim^oo P„(x)/xB = 2-nr(2«+l)/r2(«+l) [3, p. 62], we may

write

/l + rV'2-1
| 5»(*) | Ú r-"+1(l - r)~2(l - ^-"''i—^)       Mr),

where linw <pk(r) = 2-*'2+ir(¿-l)/r2(¿/2).
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Thus far r has been any number between 0 and 1. We now specify

r = 1-0+1)/». Then

.     /      k+ i\-»+1/*+ IV*-1
I *»(k) \*{l- —)        (—)       Í1 + r>"*'S

m2\ Jfe/2-1

0*(O(Cn+*,*+l)_1.

Since C„+*,it+i=»*+1/r(^ + 2), we readily compute lim sup,,^ an(k)

^A(k), where

e^V(k + 2)T(k - I)
A(k) =-— ■

(k + \)h+12k-lP2(k/2)

That linu-oo A(k) = 1 may now be verified by using Stirling's formula

for P(k).

While the numbers A (k) do tend to unity they decrease very slowly.

Computations yield A(2) =2.23, 4(4) = 1.42, 4(6) = 1.26, 4(10)
= 1.15, 4 (20) = 1.07. Hence even 4(4) is greater than e/2. A better

estimate of lim sup„,w o-„(k) for small k can be obtained by use of the

following lemma, recently announced by Bazilevic [l].

Lemma. The intersection of the circumference \w\ =x, x^reTle, with

the domain D(r) on which f(z) maps \z\ ^r<l has linear measure not

greater than that of the intersection of the same circumference with the

domain D*(r) on which f*(z)—z/(l—z)2 maps \z\ ^r.

It follows at once from the lemma that the area \p(r) of the region

D(r) is not greater than xr2e2x/e plus the area^*(r) of D*(r). Further

/» 2r p r

**(r) =|      dd I    r\f*'(reie)\2dr
Jo Jo

(2) -*£jV
Í-1

xr2(l + 4r2 + r4)

(1 - r2Y

We may now prove our second theorem.

Theorem 2. Let ¿^ 1. Then

kek+lP1i2(2k — 1)
(3) limsupcrn(/fe) ^-= B(k).

»-,» (*+ 1)*2*+1'2
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7« particular,

5(1) = 1.307, 5(2) = 1.116, 5(3) = 1.109.

Proof. We apply Schwarz's inequality to (1) to get

1 í 1 r 2t ,        ,   ) ( 1 r2*     de     )(4)   |5,(*)|.S,-{-f   |y^|w}L-_fiT___pL

To estimate the first integral we write

^ = r \f(reiS)\2de

00

= 23Ui|v2''

= 2     23iU;|2>'2,'~1<fr
J 0      j'=l

2    /• ' f(r)
= — I    -dr.

TT Jo      r

Hence (2) yields

2   Cr   [ ^(1 + 4r2 + r*))
I é —I     W2"« H--\dr.

'  ir Jo    I (1 - r2)4       Í

An integration by parts then gives

(1 - r2)3       (1 - r)2

where g(r) is a function bounded for 0 = r — l.

The second integral of (4) can be handled as in Theorem 1. Thus

, Í       2 g(r)     ) H + '2)

On choosing

¿ + 1
r = 1-

and carrying out the computations as before, we get the results as-

serted.

It is interesting to note that for values of ¿>3 the numbers B(k)
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defined in (3) increase, behaving like 2_1 {irk}1/4 for large k. The tech-

nique of using the Schwarz inequality is thus ineffective for the study

of lim supn<00 ffn(k) lor all but the smaller values of k.
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