
ON ALGEBRAIC SIMPLE MONIC SETS OF POLYNOMIALS

RAGY AND BUSHRA H. MAKAR

1. [7].1 A set of polynomials {pn(z)} =po(z), pi(z), p2(z), • • • is

said to be simple if for all n, pn(z) is of degree n. We call the set monic

if for all n the coefficient of zn in pn(z) is unity. Such a set is basic,

that is, every polynomial can be expressed uniquely as a finite linear

combination of the polynomials po(z), pi(z), p2(z), • • • . In particu-

lar,

n

2"  =   ^Tnipi(z), Xnn   =   1,

Il = [ira] being the reciprocal matrix of P= [pij], where

i

Pi(?) = X) Pif*', Pa = L
)'=0

Each of P and LT is a lower-semi matrix with all elements in the

leading diagonal unity.

Given an integral function/(z) = XXo anZ", there is an associated

series

Tl0p0(z) + ntfiOO + n2/>2(2) H-

where

un = an  + ön+lXn+l,n + an+2Tn+2,n + - * - •

The set is said to représentez) if the associated series converges uni-

formly to f(z) in every finite part of the plane.

The expression

/ log «„(A»
=  hm   <lim sup->

Ä->»   [   H-.«      » log » )

log <»n(R)\

n log

where

<*n(R) = 52 I ""«i I Ai(R),        Ai(R) = max | p{(z) \,

is called the order of the set and is of essential importance in that a

set of order w represents every integral function of order less than 1/co.
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1 Numbers in brackets refer to the references at the end of the paper.
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2. An infinite matrix A is said to be algebraic [l] if it is self-asso-

ciative and satisfies an equation of the form

a0A m + aiA m~1 + a2Am~2 + ■ ■ ■ + amI = 0,

where / is the infinite unit matrix. If this equation is the equation of

least degree satisfied by the matrix A, A is said to be algebraic of

degree m.2

Such an equation of least degree may be looked upon from some

point of view as to correspond to the reduced [5] characteristic

equation of a square matrix, but with the clear understanding that

every square matrix has a reduced characteristic equation, which is

sometimes the characteristic equation itself, while only algebraic

infinite matrices satisfy such algebraic equations.

A lower-semi matrix is self-associative, and so is algebraic if it

merely satisfies an algebraic equation. The characteristic equation of

a square matrix of order «X« in which all elements in the leading

diagonal are unity and all elements above the leading diagonal are

zero is (A —I)" = 0, and hence the reduced characteristic equation of

such a matrix is necessarily (A—1)* = 0, k^n. By mere induction,

it follows that a lower-semi matrix P in which all elements in the

leading diagonal are unity, if algebraic of degree m, must satisfy the

equation (P —J)m = 0, which is

(2.1) Pm - mclPm-x + mClPm~2 - • • • + (-1)™/ = 0.

The simple monic set of polynomials {¿>„(z)} whose matrix of

coefficients is P may be called an algebraic set of degree m, and we

have: {/»,(«) }m-me¡{pn(z) }m~1+ ■ ■ ■ +(-i)m{z"} =0.

3. The order of a simple monic set whose coefficients are of certain

order of magnitude has been investigated. Thus it has been shown

that if in such a set \pni\ =knx, « = 1, 2, 3, ■ ■ • , i = 0, 1, 2, • • ■,« —1,

then the set is of order at most X [ó], and a set has been constructed

whose order is the upper bound X. The same upper bound has been

obtained [2] for the order of a simple monic set in which \p„i\
= knMn~l).

It is worthy of remark that X is not the upper bound of the order of

a simple monic set in which \pni\ =kn^n, » = 1, 2, 3, ■ • • ; i = 0,

1, 2, • • • , »—1. An obvious example is the set {pn(z)} defined by

po(z) = 1,        pn(z) = - A*"*"-1 + z",        n = 1,

2 We rather prefer the term "degree" than the original term "order" given in

[l], since the term "order" is necessarily used here with a different meaning.
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which is of infinite order. The reduced characteristic equation of the

square matrix

-10   0 0 •..-

«i   1    0 0 • ■ •

0    a2 1 0 • ■ •

0    0    a3 1

of order nXn, au a2, • • • , ¿[„-i^O, is easily seen to be (A— 7)" = 0,

so that making n—><*>, the matrix of coefficients P of the above set

does not satisfy an algebraic equation. In other words, the set

{pn(z)} is not an algebraic set.

We show that the order of an algebraic simple monic set in which

|pni\ ^knXn has an upper bound which is finite, and may be attained.

In the case of a simple monic set in which \pn<\ =&wX(n-i), n

= 1, 2, 3, • • • ; i = 0, 1, 2, • • • , n — 1, the set {^„(2)} and its powers

{pn(z)}" are all [2] of order X at most. The factor n_Xi plays an im-

portant part. In the case of an algebraic simple monic set of degree m

satisfying (3.1), such a factor is not present and a similar result is

not expected. It may be noticed at once that the coefficients of the

power set \pn(z)\" may become of larger and larger order of mag-

nitude as v increases until v reaches the value m — 1, when the alge-

braic equation (2.1) seems to stop such increase in the order of mag-

nitude of coefficients, for the set {pn(z)}m and higher powers. We may

therefore expect the order of {pn(z)} " to increase with v, until v

reaches the value m — \, when the order becomes fixed. A complete

investigation of the growth of such an order is given.

Theorem 1. If \pn(z) \ is an algebraic simple monic set of degree m

in which

(3.1) \pni\úkn^,   é= í;n= 1,2,3, ••• ;* = 0,1,2, •••,»- 1,

then {pn(z)}" is of order at most (m-\-v — V)\, l^v^m — i, {pn(z)}'

is of order at most 2(m — l)\, p = m—T. The upper bound may be at-

tained in all cases.

Equation (2.1) is

(3.2) 7 = mclP - mclP2 + mC!,P3-+ (-1)—»P-.

Multiplying by n = P_1 we get

(3.3) n = mcJ - mCtP + mc,P2 -•••+(-1)— »P—1.
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If we write P*=p$\ then

n-l

Pni    = pni +    Z   PniPii + Pni
j=i+l

so that by (3.1)

| pni | ^ k n     Z j    + 2kn   >
J=>'+1

that is,

(3.4) | Pni | < k\n + l)wn",     n - 1, 2, 3, • • • ; i = 0, 1, 2, • ■ • , n.

Also

ín.'    = Pni    +    Z   Pni P H + Pni

so that by (3.1) and (3.4)

,       (3) i 3 2    3Xn

(3.5) | pl\ <k(n+l)n    .

In general,

(3.6) |^|<^(W+1)"-VX",

n = 1, 2, 3, ■ • • ; i = 0, 1, 2, • • • , n.

By (3.3) and (3.6)

1Tni |  < Z mcv+l \ Pm   \ {i = 0, 1, 2, •••,«— 1)

< I»Iitl*"(»+ l)-1»'*»,

that is,

(3.7) | xBi| < 2m¿m-1(» + l)«-8»(«-i)x»

Also

¿<(*)SZ|í«|*'

< *(* + l)jRV* (i? > 1; i = 1, 2, 3, • • • )

< k(n + l)£»»Xn (i = 0, 1, 2, • • • , n)
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so that

un(R) < 2mkm(n + l)mÄnnmXB, n = 1, 2, 3, • • • ,

from which w = wîX. Thus the set  {pn(z)}  is of order at most raX.

We next write {p»(z)}'={ p^(z) \, IP- [iff ],

«¿"(P) = Z I »Í? I ¿r(P),        ̂ "(P)   = max | tj%) |.
¿=.o 1*1=*

Multiplying (3.2) by LT2 = P-2 we get

n2 = mClU - mcJ + mC3P - • • • + (-i)>»-ip™-2,

from which

m—2

(2) l     V  z'       ^*+1 >.(*) • O    1     O 1
ir„<  = mc{irni + 2^ (—1)    fnCr+2pni , i = U, 1, ¿, • • • , n — 1,

»=.i

so that by (3.6) and (3.7),
m—2

|       (2) I ~m   ™—1

Î» .,• | < mCl2mkm   (n + 1)     w " + 22 »».,+,* (» + 1)

or

(3.8) | «w | < 2    k     (n+l)     n

Also,

a mrv>\ *■ V" I  a(2) I  d»
-4»  (P) á 2-1 />« I R

Í-0

Whence

< fc2(« + l)2i?"«2Xn,   * = 0, 1, 2,

i>„ (P) < 2   ä     (» + 1)     it w ,

sothat«<2)g(m+l)X.

Again, multiplying (3.2) by II3 = P~~3 we get

LT3 = mc¡U2 - «„II + mcJ - mCiP + • • • + (-1)—lP—».

Whence by (3.6), (3.7), and (3.8)

i       (3) i 3m, m— 1 ,.m-!    (m—l)Xn

(3.9) |^i | < 2   *     (n+l)     n
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It appears clear that for any v,

(3.10) | T„i I < 2   k     (n + 1)     n

Also

1=0

< ¿3(w + 1)IR"«3X" (by 3.5),

which leads with (3.9) to

w(») ̂  (m + 2)\.

In general for any v,

¿<  (i?) < * (» + 1) A n    ,

which gives with (3.10),

UM ^ (OT + „ _ i)x.

As a special case

W(«-D ^ 2(w - 1)X.

Now from (2.1)

P» = mClPm~1 - mCiPm~2 + ■ • • + (-1)"1-1/,

so that

|  Pni     |   Ú   Z >»c, I  í»i    I (î  =   0,   1,  2,  •  •  •   ,  M  -   1)

< 2m/fem-1(w + l)™-2»<"»-W» (by 3.6).

This gives with (3.10)

w<-m> g 2(w - 1)X.

In the same way, the relation

leads to

»<«+') ^ 2(w - 1)X, all v = 1.

This completes the proof of the theorem.

The fact that the upper bound may be attained will be illustrated

in §5 by means of an example.
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4. The simple monic set in which the operators 7r„< satisfy either

|7rni| = ¿»xor |7Tn<| ¿knUn~&, » = 1, 2, 3, • ■ -, i = 0, 1, 2, • • • , *-l,

has been studied [6; 2] ; the order in either case may attain its upper

bound X. We consider here the case in which 17r„<| =&»Xb and the set

is algebraic.

Multiplying both sides of (2.1) by Um = P-m, we get

(4.1) 7 - mCiU + mCin2 - • • • + (-l)»n*» = 0,

so that the statement that the simple monic set {pn(z)} is algebraic

of degree m means both equations (P — 7)m = 0 and (IT —7)m = 0.3

By a treatment similar to that in Theorem 1 and using the equation

P = mcJ - mcfl. + mc,U2-h (-1)—TC«-1

obtained from (4.1) to determine the coefficients pa, we obtain the

following results.

Theorem 2. If {pn(z)} is an algebraic simple monic set of degree m

in which

(4.2) | r.«| = ¿«Xb, k ^ 1, n = 1, 2, 3, • • • ; i = 0, 1, 2, •••,«- 1,

then

{pn(z)\y is of order at most (m+v — 1)X, l=p=?w — 1,

{P<>(z)} " is of order at most 2 (m — 1 )X, v = m — 1.

The upper bound may be attained in all cases.

5. The construction of an example to show that {pn(z)}' may

actually be of order (m+v — 1)X, for a given value of m and any as-

signed value oí v, l_/v_w —1, may seem to be of some difficulty.

We give here one and the same example for the values m = 3 and

v = 1, v = 2. A detailed study of the example will make it clear that we

can actually construct an example for any value of m and any value

of v, provided that we have enough time and plenty of paper.

Consider the set {pn(z)} defined by:

pth{z)    = z6*

peh+1(z) = 4»(h)z«> + z6*+1

M+íM = %{h)z^^ + ¡5«*+2

M+jM = 3M(A)s6"+1 + z«>+'

pih+t(z) = - 2n(h)z^1 + 6m(ä)z«*+j + s"*"*-4

towto = 6m(ä)z»*+1 + z6*-",

where /»(A) = (6Ä+1)X<8A+1>, Ä = 0.

' It follows also that if {pn(z) \ is an algebraic simple monic set then its reciprocal

set {pn(l) J  [3] satisfies the same algebraic equation.
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The reduced characteristic equation of the square matrix

A =

1

4m

0

0

0

LO

0

1

9m

3fi

0

0

0

0

1

0

■2m

0

0

0

0

1

6¿u

0

0

0

0

0

1

6m

0

0

0

0

0

u
is easily verified to be (A —1)3 = 0. Since the matrix P of coefficients

of the set {/>n(z)} consists of blocks of the type A, the method of

partitionization gives the corresponding equation (P —J)3 = 0, so that

the set {pn(z)} is algebraic of degree 3.

(An algebraic semi-lower matrix does not need to consist of such

blocks, for example, the infinite matrix
■1

pw

0

pao

0

pbo

1

0

0

0

0

1

p32

0

/>62

1

/>64

is algebraic of degree 2. But every semi-lower matrix which consists

of such blocks of 5 rows and s columns is algebraic of degree 5 at

most.)

From the relation A3 — 3A2-\-3A—I = 0 we have

A-1 = 31 - 3A+ A\

It can be easily verified that

A2 =

1

8m

36M2

12m2

0

0

0

1

18m

6m

0

0

0

0

1

0

-4m

-12m2

0

0

0

1

12m

36m2

0

0

0

0

1

12/i

0

0

0

0

0

1J

and
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A-1 =

1

-4M

36m2

12m2

0

0

0

1

-9m

— 3ju

0

0

0

0

1

0

2m

12m2

0

0

0

l

— 6m

36m2

0

0'

0

0

1

-6m

0"

0

0

0

0

1.

so that

z*h+6 = - I2ß2(h)p6h+2(z) + 36m2(A)M+3(z)

- 6fi(h)p6k+i(z) + pth+t(z),

ueh+b(R) > 36ß2(h)-A6h+3(R)

> 36ß2(h)-3ß(h)Reh+1.

Therefore

log WtK+6(R)
hm-
a^» (6Ä + 5) log (6A + 5)

è 3X.

By Theorem 1, the set \pn(z)} is of order 3X.

The reciprocal set, {p„(z)}, of the above set is one satisfying (4.2).

For this set we have

26A+4  =   _   2ß(h)Pek+2(z)   +  6ß(h)P*h+3(z)  +  plh+t(z),

¿o6h+i(R) > 2ß(h)-Jeh+2(R)

> 2ß(h)-36ix2(h)R6h,

so that ¿> = 3X, by Theorem 2.

It can also be verified that

A-2 = 3A-1 - 37 + À =

1

-8m

108m2 - 18m

36m2

0

0

■6m

0

0

0

1

0

4m

0

0

0

1

■12/1

0

0

0

0

1

0    -36m2   108m2-12m

O'

0

0

0

0

1

so that

6A+5 (2) .(2) . (2)
= - 36m (h)psh+2(z) + 108m (h)ptK+,(z) - 12n(h)peh+i(z)

+ pu+i(z),
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(2) 2 f2)«¿¿.(P) >36M(Ä)-^6lA+2(P)

2 2 6%

> 36M (â)-36ai (h)R   ,

so that co(2)=4X, by Theorem 1.

For the reciprocal set {pn(z)} we have

z       = — 12/1 (h)p6h+2(z) + 36p (h)p6h+s(z) + I2ß(h)peh+i(z)

_l xm  / \
+ pt,h+i\Z),

¿¡¿»(P) >36p (h)-A«h+3(R)

> 3(>p(h)-36¿(h)R*h,

so that ¿(2)=4X, by Theorem 2.

6. If {pn(z)} is a simple set in which the zeros of pn(z) all lie in

|z| = &rax then [4] {pn(z)\ represents every integral function of order

less than 1/(X+1) but may not represent an integral function of

order 1/(X+1). When we consider algebraic sets we get the following

result.

Theorem 3. If {pn(z)} is an algebraic simple monic set in which the

zeros of p„(z) all lie in the circle \ z\ =&wx, then \pn(z)} represents every

integral function of order less than 1/X.

We have

n

pn(z) = (z - a„i)(z — an2) ■ ■ ■ (z — ann) = 2 pniZ\

therefore

|  pni |   á  Wc,/feB_i«X(n_i)   <   2B¿"-i«X(B~i).

Proceeding as in Theorem 1,

(2) |      ^    ^—\  nn1n—j   X(n— j)   ^^  ^ 3 7 3—* .X(J—i)        ^   r»2n iB—*'/        i     .\    Mn—*)

3=1

i Pn-1 < z 2nrv"~" x fire™ < rr\n + d»

In general

pni I < 2   k    (n+l)    n        ,

therefore

m— 1

.00| i„<| á Z««,+il #»• I < 2m-2<-m-»nkn-i(n+ 1)"-V«—*>.
>=i

Also
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i
Ai(R) < Z 2iki-Hx<-i-»Ri < 2<£ii?i(i + 1HXÍ,       R > 1.

í-o

Therefore

wn(R) < 2<m+1)nknRn(n + l)"-1»*».

Therefore the set is of order at most X, and hence the result.

7. If {/>n(z)} and {gn(z)} are two simple monic sets, then the

sum set \un(z)} = [a{pn(z)}+ß{qn(z)}]/(a+ß), a+ß^O, is also a

simple monic set. It is quite remarkable that the two sets {¿>n(z)}

and {<z„(z)} may be of finite order, X say, and the set {m„(z) } is of

infinite order. Thus if

po(z) = 1,       p„(z) = 2-nHn~l + z", n = 1,

and

ço(z) = l,    <?n(z) = z", n odd,    ç„(z) = ( —2-«x+2«nX)zn_1+zn,    «even,

then {p„(z)} and {qn{z)} are both of order X, while {w„(z)} = [ {pn(z)}

+ {<Zn(z)}]/2, defined by,

Wo(z) = L       M»(z) = wxzn-l+z", « odd,       «n(z) = »"xzn"1+zn,       »even,

is of infinite order.

It is clear that the set { m„(z) } is not algebraic. When we assume

that the sum set { m„(z) } is algebraic, we obtain the following inter-

esting result.

Theorem 4. If {pn(z)}, v = \, 2, 3, • ■ • , s, are simple monic sets

of order X each, then the sum set

{«»(z)} = —;-;-;— Mpl(z)} + ■■■ + *.{pn(z)}],
<*i + ct2 + • • • + a,

Z «v ̂  o,

if algebraic of degree m, is of order at most m\.

For any fixed value of R, say 2?>1,

œn(R) < k,n'n, n = 0,\'>\,

therefore

| pni | R* á A'n(R) = o>'n(R) < h,n'n,

therefore
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| pni | < krn    , kr = max (kh k2, • ■ ■ , k,),

therefore

\ u„i \ < kn    , k = kT- Z I a» I / I Z a" I ■

Since {un(z)} is an algebraic simple monic set, then, by Theorem 1,

it is of order at most m\'. Since X' is arbitrary, greater thanX, {m„(z) }

is of order at most mh.

The fact that the order m\ may be attained is illustrated by the

following example:

P,k+i(z) = 8ß(h)z*h + z«h+\

*6A+4(z) = - 4Kh)zeh+2 + 12m(ä)z6A+3 + zeh+i,

pn{z) = zn, « = 6h, 6h + 2, 6h + 3, 6A + 5,

•+2(z) = 18m(ä)z6A+1 + z6A+2,

qth+i(z) .= 6m(ä)z6A+1 + z6A+5,

?6A+6(z) = 12M(Ä)z6ft+4 + z6ft+6,

g„(z) = z", « = 6Â, 6Ä + 1, 6Â + 4,

where

m(A) = (6* + l)x<6"+1>, & è 0.

Each of the sets {pn(z)} and {qn(z)} is of order X. The sum set

\un(z)} = \_{pn(z)} + {<Zn(z)} ]/2 is the set given in §5. Thus the sum

set is algebraic of degree 3 and of order 3X.
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