
A NOTE ON ERGODIC THEORY

R. S. PHILLIPS

The purpose of this paper is to present solutions to certain problems

in ergodic theory suggested by Einar Hille in his book Functional

analysis and semi-groups [l].1

Let 7X£) (£>0) be a semi-group of linear bounded transformations

on a complex Banach space X to itself. Following Hille, we say that

T(£) is ergodic at infinity (or at 0) if it has a generalized limit of

some sort when £—>=o (or 0 + ). We define the Abel mean

/»CO

(1) L[\, T(-)x] = \ \    exp(-Xf)r(f)xd{
Jo

and the Cesaro-a (C-a) mean

(2) a[l T(-)x, a] = af  f   (Í - r^T^xdr.
J o

In order that the integrals involved shall have a sense, we impose the

following restrictions on T(Ç):

(i)       7(|) is strongly measurable for ? > 0,

(ii.)       j    exp (-\S)\\T(Ç)x\\d£ exists for X > 0 and all * E ï
Jo

or

ii„)      f   exp (-Xf)|| 7(£)||¿£ exists for X > 0.
Jo

(

In theorems referring to limiting processes at infinity we shall also

impose the restriction

(iü)       lim rp1 f   T(Ç)xd£= x for all z G X.
1—0+ J o

Condition (i) alone implies that 7\£) is strongly continuous for

£>0 (see [l, Theorem 9.2.1] and [2]); whereas (ii„) implies the exist-

ence of the Abel mean for X>0. If (iiu) is satisfied, the infinitesimal

generator 4 of the semi-group operator will be a closed linear trans-
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1 Numbers in brackets refer to the references cited at the end of the paper.
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formation. If conditions (i), (ii„), and (iii) are all satisfied, then the

resolvent theory (see [l, sec. 11.8]) is,valid; in particular the linear

bounded operator

(3) R(\;A)x =  f   exp (-\OT(t)xdS
Jo

exists for Re (X)>0, satisfies the first resolvent equation, and

(\I - A)R(\;A)x= x iorxEx,

R(\; A)(\I - A)x = x for se G 3)[¿],

where 3)[.4], the domain of A, is now dense in 3Ê. It will be shown in

Example 2 that conditions (i), (iiu), and (iii) do not imply the

boundedness of ||7X£)|| m a neighborhood of the origin. Finally, if U

is a linear operator on 3£ to itself, we denote by 9î[i7] the range of

U and by £[U] the zeros of U.

Our principal result is the proof of the following theorem conjec-

tured by Hille [l, p. 301 ].

Theorem 1. If the semi-group operator T(£) satisfies conditions (i),

(iiu), (iii); and if in addition ?H[A2] is closed and limx,o+ X2i?(X; .4)x

= 6 for all x£3£, then T(£) is Abel ergodic at infinity in the uniform

topology.

We first show that î)[.42] is dense in H. In fact, for any xEH, set

y(r) =-  fT(r-^T(è)xd^
t3 Jo

6   rT

T3Jo

It follows from (iii) that y(r)—>x as r—»0 + . Hence it will be sufficient

to show that y(r)£3)^42]. However a straightforward calcula-

tion (compare with [l, Theorem 11.5.1]) shows that Ay(r) =

(6/T*)fl(T-2£)T(t)xd!j and42y(r) = (6/r3) [2fr0T(^)xd^-TT(r)x-rx].
Next, if xEX)[A2], we deduce from (4) that

(6) \2R(\; A)x - \x - Ax = R(\; A)A2x = A2R(\; A)x.

By hypotheses, limx*o+ X2i?(X; A)x = 6, so that limx»o+ A2R(k; A)x

= -Ax. Thus if xE&[A2], then 4x£9i[42] (closed by hypothesis).

In other words 9í[42]Z)3)[4]PiÜí[^], from which it follows that

X)[A]r\'¡R[A]=^[A]r\l¡R[A2]. Further, A is one-to-one on ©[4]

Pi$R[^2]. For, if xE®[A]r\$t[A] and Ax=6, then there exists a

yE3)[.42] such that x = .4y and by (6)

(s-'J"t(£)x< d̂s.
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(7) x = Ay =   lim R(\; A)A2y = d.
x->o+

We define 4i to be the contraction of 4 on 3Î [42]. Then 4X is closed,

one-to-one, and 9î[4i] = $R[42]. It follows that A^1 is a linear

bounded operator [l, Theorem 2.13.9] on 9î[42] to itself. For y

E$l[A2], set x = Aixy. Then xG£>[4i] and by (4)

R(\; A)y = - x + \R(\; A)x.

Since X2i?(X; 4)x—>0 as X—>0 + by hypothesis, lim\^0+ Xf?(X; 4)y=0
for all yG8î[42]. By a generalized version of the Banach-Steinhaus

theorem [l, Theorem 2.12.2] there exists a constant M such that

||Xi?(X; A)y\\ SM\\y\\ for 0<Xgl and all yG9î[42]. Hence

(8) ||X12CX; A)y\\ ̂  M\A?\\ I 1 + M \ \\y\\

lor all yG9î[42] and 0<X^1.
S [A] can be characterized as the set of all x such that 7"(£)x = x.

In fact, if xG,3[4],

rtdTtfx cl
T(£)x-x=   I    —-dr =   I    T(r)AxdT = d;

Jo       dr Jo

the converse is obvious. It follows that 3 [A ] is a closed linear sub-

space and that Xi?(X; A)x=x lor each xES[A]. Thus 3[4]P\9î[42]

= 0. On the other hand C3[4]e$R[42])- = £.2 For if xEX)[A2], then
42x = zG9î[42]. Let xi = 4r2z; then XiEX)[A2]r\di[A2]. Hence

A2(x — xi)=0. Applying (7) (with y = x —Xi), we see that x2 = x — xx

E£>[A]. In other words x = Xi+x2G9î[42]©3[4]. The conclusion

then follows from the fact that (3)[42])~ = X. We can, however, prove

much more; in fact, 3E = 9î[42] ®S [A]. Given xG£> as we have just

shown, there exists a sequence xn = y„+z„ such that x„—>x, y„ G9Î [42 ],

and z„G,3[4]. Now

[T(0 - I]xn = [7«) - 7]y„ = [2X0- l]A2wn = 42[7® - l]wn

where w„G3)[42]. Hence [T(£) -7]xG3t[42] for all £>0. Since

9?[42] is closed and linear

- f V- mm) - 7)x¿iG9í[42].
T3 Jo

However, as we have seen in (5), y(r)G3)[42] and as above £)[42]

! (SDÎ)- denotes the closure of the set 3K.
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OKl42]©3[A]. Therefore

belongs to 9î[42]©,3[-4]- Thus for each x£ï there exists a unique

decomposition x = y+z where y£9î[.42] and zES [A ]■ We define the

projection operator Px = z. Since both 9î[^42] and ^[^4] are closed, P

will be closed and since it is defined for all xGï it will be bounded

[l, Theorem 2.13.9]. Now PxES[A], so that Xi?(X; A)Px = Px.

Hence by (8)

||X2c(X; A)x - Px\\ = ||\i?(X; A)(l - P)x\\ = \K.\\x\\

and T(£) is therefore uniformly ergodic at infinity to the projection

operator P.

We remark that the converse of Theorem 1 follows directly from

[l, Theorem 14.8.3 and 14.8.4].

Theorem 2. If the semi-group operator 7"(£) satisfies conditions (i)

and (ii,), if T(£) is strongly Abel ergodic at 0, and if ||a(£, T(-)x, a)\\

^Af||x|| for 0<£<1, then 7X£) is strongly (C-a) ergodic at 0.

Condition (ii,) can be replaced by the weaker condition /¿|| r(£)x||d£

< » for all xGï. It is interesting to note that Theorem 2 does not

have its counterpart in the infinite limit. In the latter case, Hille [l,

Theorem 14.7.2] has proved a much weaker theorem and this with

the help of a Tauberian theorem, whereas the following proof is of

an elementary nature.

By assumption, limx^«, 7,[X, T(-)x] = Jx for all x£x\ As Hille has

shown [l, Theorem 14.6.2], J is a bounded projection operator,

X = M[J] ®S[J],3lJ] = rii3[m)], and m[j] = (®[A])-. Hence for
any xGï. x = Jx+(I—J)x=y+z. Since yG9t[/] = (2)[.4])~, there

exists a sequence ynG3)[-4] such that yn-^>y- For y„G3)[-4],

lim£^o+ TX£)y„=yB; whereas for zG3[7], 7\£)z = 0. Hence

lim a[£, T(-)(yn + z), a] = y„.
í->o+

By hypothesis a [£, T( • )x, a] is a family of linear continuous operators,

uniformly bounded for £G(0, 1). Hence the iterated limits exist and

their order may be interchanged ; that is,

lim a[£, T(-)x, a) =   lim   lim a[£, T(-)(yn + z), a]
Ï-0+ í->0+      n

= lim y„ = y = J(x).
n
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For purposes of the following theorem, we define 36i = (9î[4]

©3[4])_, 4i to be the retraction of 4 on &, and 42 to be the re-

traction of 4 on (9î[4])~. We then have the following theorem.

Theorem 3. If the semi-group operator 7"(£) satisfies conditions (i),

(ii„), (iii), and if \\\R(\; A)\\ ^M for 0<X<1, then limx^o+XP_(X, 4)x
exists for all xG*i, r(f)ïiCïi, and (9î[4])- = (9î[4i])- = (9î[42])-.

As in Theorem 1, 3 [4] is closed and \R(\; 4)x = x if xGc3[4].

If xG3i[4], then x = Ay and by (4), XP(X; 4)x=X2P(X; A)y-\y
so that XP(X; 4)x—>0 as X—>0 + . Thus this limit exists for all x

G9î[4]©,3[4] and since ||XP(X; A)\\ ̂ M for XG(0, 1), it will exist
for all xG&. Now if x = y+z where yG9î[4] and zG,3[4], then

T(Ç)z = z and T(Ç)y = T(Ç)Aw = AT(Ç)w for some wEX)[A]. Hence

T(£)x = z+AT(!£)w belongs to &, and since T(%) is continuous the

same applies to all xGïi- Therefore relative to 3Ei, T(i-) is strongly

Abel ergodic at infinity. As Hille [l, Theorem 14.6.1] has shown,

there exists a bounded projection operator Pi on 36i such that

limx,o+ L[X, T()x]=PiX for all xG*i, S[Pi] = (K[Ai])-, dt[Pi]
= S[Ai], and 3Ei = (9c[4i])-©3[4j. Now by the definition of &, it
follows that 3 [4] =3 [4i]. Clearly (9î[4])-D(9î[4i])-. The converse

is likewise true. For if xG9î[4], then as above XP(X; 4)x—>d. The

same is true of xG(9î [4 ])~ since ||XP(X; A)\\ g M for 0 <X < 1. Hence

if *e(9c[4])-, thenxG3[7Ji] = (5R[4i])-. Finally if yE$t[Ai], then
there exists an xG3) [4i] such that y =4xx. By the above decomposi-

tion, PixG3[4i]; hence w=(7-Pi)*G£>[4i]n(9î[4i])- and AiW

= y. In other words 3t[42] =SR[4i].

Corollary 1. If T(£) satisfies the hypothesis of Theorem 3 and if

ï=(9î[4]ffit3[4])~, then 7\£) is strongly Abel ergodic at infinity.

This result is slightly stronger than that obtained by Hille [l,

Theorem 14.7.1 (2)].

Corollary 2. If T(£) satisfies the hypothesis of Theorem 3, then X = 0

is either in the resolvent set or in the continuous spectrum of A2.

Clearly (9î[4])_ = (3î[42])_ rules out the residual spectrum and

c3[4]n(9î[4])_=0 rules out the point spectrum.

Hille has conjectured [l, p. 295] that a semi-group operator satis-

fying the hypothesis of Theorem 3 and such that X = 0 does not be-

long to the residual spectrum of either 4 or 42 would necessarily be

strongly Abel ergodic at infinity. It is clear from Corollary 2 that the

condition imposed on 42 is already implied by the other restrictions.

Thus in order to construct a counter-example to this conjecture it
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will be sufficient to produce a non-Abel-ergodic semi-group satisfying

the hypothesis of Theorem 3 and having X = 0 in the point spectrum

of A. This we do in the following example.

Example 1. Let H = m, the space of bounded sequences \an}, with

norm||{an}||=LUB | an\. We define T(Ç) {an} = {<} by

C7o     =   00,

ö„' = an exp (—i£/n) for n = 1.

Clearly ||r©||= l.and

\\(T(è) - I){an}\\ á||{a«}[H«rp(¿0-l|.

Thus r(f) is uniformly continuous at the origin and hence A is a

linear bounded operator. In fact for A \a„} = \a'n}, we have

a„'  = 0,

aB  = ia„/n for « = 1.

It is clear that X = 0 is in the point spectrum of 4. Finally if we have

\R(\; A) {an} = {an}, then

«o   = ao,

añ = ann\/(n\ + i) for « = 1,

and since |«X/(mX + î)| =1 for X>0, it follows that ||Xi?(X; A)\\=l

for X>0. Now if T(£) were strongly ergodic at infinity to the projec-

tion operator P, then

%[P] =S[A}= Kb.O, 0,0, •■•)]•

However this limit fails for {es„ = l} since

||(X*(X; A) - P)(l, 1, ... )|| = ||(0, ... , »X/(nX + i), ■ ■ ■ )\\ = 1

for allX>0.

Example 2. We next define a semi-group operator T(£) satisfying

conditions (i), (iiu), (iii) and such that lim sup{„o+ ||7"(£)|| = °°. We

start with a sequence of two-dimensional normed linear spaces IB and

define ï to be the set of all sequences {XnGïnj such that 23lFn|| < °°>

with norm || {xn}|| = 23||x»||- 3Ê» itself is defined as the set of all com-

plex-valued pairs x„ = (y, z) with norm ||x„|| = (jy| 2 + «|z| 2)1/2. We

now define a semigroup operator Tn(Ç)xn = x'n on 3£B to £B such that

y' = exp [—(« + in3)l-](y cos «£ — z sin «£),

2' = exp [ —(« + in3)l-](y sin w£ + 2 cos «£).

It  is  clear  that  ||7\,(£)|| á«1/2  exp   (-«£)   and  that  ||rB(ir/2»)||
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= »1/2 exp ( —ir/2) [as can be seen by operating on (1, 0)]. The semi-

group operator 7X£) is defined by 7"(£){x„} = {7\.(£)xn}. It follows

from the way the norm in X has been defined that | P(£) |

= LUB ||rn(i)||á(2e£)-1/2. Now 7"n(£)xn is clearly continuous in ¿,

and since the lim* 2Z^|¡ 7"n(^)x„|| =0 uniformly in £—5>0, T(£){xn}

will itself be strongly continuous for ¿>0. In this case ||P(¿)|| is

measurable and, from the above upper bound, we have

/» OO y» OO

I    exp (-Xö||r(ö||dE =   I    exp (-U)(2eO'll2d^ < oo      for X > 0.
Jo Jo

Further, since ||r(ir/2«)|| ^«1/2 exp ( —ir/2), lim sup^o+ ||7X£)|| = °°.

It remains to show that (iii) is satisfied. We define

S(v)x = V-' (' T(Z)xdt= {Sn(v)xn\
Jo

Here

Sn(v)xn = IT1 f   7B(£)xnd| = xj = (a(V)y - ß(V)z, ß(v)y + a(r,)z)
Jo

where

<*(v) = t)~1 I    exp [—(» + in3)%] cos ra£d|,
Jo

ß(v) — V-1 I    exP [— (« + t'«3)f] sin »£d£.
Jo

A straightforward calculation shows that | a.(ij) | ^ 1 and |ß(-q) |

g2/w2. Hence for \y\ 2+w|z| 2= 1,

| y' |2 + « | z' |2 ^ | y |2 + » | z |2 + (4/») | y | | z | + (4/«2) \y\\z\

+ (4/»2)| y\2+ (4/V)|z|2

g 1 + 16/» g 17.

Therefore ||S(n)|| áLUB ||5„(ij)|| = 17. For ultimately zero vectors,

it is clear that 7\£)x—>x as £—>0+ and hence that S(rf)x—»x as rç—>0 + .

Since such vectors are dense in ï and since ||S0?)|| = 17, it follows

that S(rj)x—fX as r¡—»0 + for all xGÏ.

Example 3. We conclude with an example of a strongly continuous

group operator 7\£) on (— <x>, co) for which || 7\£)|| is not continuous.

This example settles a question raised by Hille [l, p. 184]. As in

Example 2, £ = Hi* and ||x|| = 2||x„||. In this case, however, ||x„|| = \y\
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+ |z|, and T„(¡;)xn = xn is defined by

y' = y cos n% — z sin «£,        z' = y sin «£ + z cos w£,

which is simply a rotation in £„. Since the unit sphere in 36B is

a square, the maximum expansion will be 21'2. Hence ||7X£)|

= LUB ||rB©|g21'2. For ¡t = kw (¿ = 0, ±1, ±2, • • •), ||r©x!

= ||x|| so that [^(¿7r)|| =1. For «¿ = («¿±l/4)ir, set x„ = (l, 0) anc

Xj = 0 for j¿¿n. Then x„ = ( + 1/21'2, ± 1/21'2) so that || T [(k ± 1/4«)tt]|

= 21/2. Therefore ||7X£)|| is discontinuous at the points kir. One can

show as in Example 2 that T(i-)x is strongly continuous on ( — co, co ).
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