A NOTE ON ERGODIC THEORY

R. S. PHILLIPS

The purpose of this paper is to present solutions to certain problems in ergodic theory suggested by Einar Hille in his book Functional analysis and semi-groups [1].

Let $T(\xi)$ ($\xi > 0$) be a semi-group of linear bounded transformations on a complex Banach space \mathfrak{X} to itself. Following Hille, we say that $T(\xi)$ is ergodic at infinity (or at 0) if it has a generalized limit of some sort when $\xi \to \infty$ (or 0+). We define the Abel mean

(1)
$$L[\lambda, T(\cdot)x] = \lambda \int_0^\infty \exp(-\lambda \xi) T(\xi) x d\xi$$

and the Cesaro- α (C- α) mean

(2)
$$a[\xi, T(\cdot)x, \alpha] = \alpha \xi^{-\alpha} \int_0^{\xi} (\xi - \tau)^{\alpha - 1} T(\tau) x d\tau.$$

In order that the integrals involved shall have a sense, we impose the following restrictions on $T(\xi)$:

(i) $T(\xi)$ is strongly measurable for $\xi > 0$,

(ii_s)
$$\int_0^\infty \exp(-\lambda \xi) ||T(\xi)x|| d\xi \text{ exists for } \lambda > 0 \text{ and all } x \in \mathfrak{X}$$

or

(ii_u)
$$\int_{0}^{\infty} \exp(-\lambda \xi) ||T(\xi)|| d\xi \text{ exists for } \lambda > 0.$$

In theorems referring to limiting processes at infinity we shall also impose the restriction

(iii)
$$\lim_{\eta \to 0+} \eta^{-1} \int_0^{\eta} T(\xi) x d\xi = x \qquad \text{for all } x \in \mathfrak{X}.$$

Condition (i) alone implies that $T(\xi)$ is strongly continuous for $\xi > 0$ (see [1, Theorem 9.2.1] and [2]); whereas (ii_s) implies the existence of the Abel mean for $\lambda > 0$. If (ii_u) is satisfied, the infinitesimal generator A of the semi-group operator will be a closed linear trans-

Received by the editors July 20, 1950.

¹ Numbers in brackets refer to the references cited at the end of the paper.

formation. If conditions (i), (ii,), and (iii) are all satisfied, then the resolvent theory (see [1, sec. 11.8]) is valid; in particular the linear bounded operator

(3)
$$R(\lambda; A)x = \int_0^\infty \exp(-\lambda \xi) T(\xi) x d\xi$$

exists for Re $(\lambda) > 0$, satisfies the first resolvent equation, and

(4)
$$(\lambda I - A)R(\lambda; A)x = x \qquad \text{for } x \in \mathfrak{X}, \\ R(\lambda; A)(\lambda I - A)x = x \qquad \text{for } x \in \mathfrak{D}[A],$$

where $\mathfrak{D}[A]$, the domain of A, is now dense in \mathfrak{X} . It will be shown in Example 2 that conditions (i), (ii_u), and (iii) do not imply the boundedness of $||T(\xi)||$ in a neighborhood of the origin. Finally, if U is a linear operator on \mathfrak{X} to itself, we denote by $\mathfrak{R}[U]$ the range of U and by $\mathfrak{Z}[U]$ the zeros of U.

Our principal result is the proof of the following theorem conjectured by Hille [1, p. 301].

THEOREM 1. If the semi-group operator $T(\xi)$ satisfies conditions (i), (ii_u), (iii); and if in addition $\Re[A^2]$ is closed and $\lim_{\lambda \to 0+} \lambda^2 R(\lambda; A) x = \theta$ for all $x \in \mathfrak{X}$, then $T(\xi)$ is Abel ergodic at infinity in the uniform topology.

We first show that $\mathfrak{D}[A^2]$ is dense in \mathfrak{X} . In fact, for any $x \in \mathfrak{X}$, set

(5)
$$y(\tau) = \frac{6}{\tau^3} \int_0^{\tau} (\tau - \xi) \xi T(\xi) x d\xi$$
$$= \frac{6}{\tau^3} \int_0^{\tau} (2s - \tau) s \left(s^{-1} \int_0^s T(\xi) x d\xi \right) ds.$$

It follows from (iii) that $y(\tau) \to x$ as $\tau \to 0+$. Hence it will be sufficient to show that $y(\tau) \in \mathfrak{D}[A^2]$. However a straightforward calculation (compare with [1, Theorem 11.5.1]) shows that $Ay(\tau) = (6/\tau^3) \int_0^\tau (\tau - 2\xi) T(\xi) x d\xi$ and $A^2 y(\tau) = (6/\tau^3) \left[2 \int_0^\tau T(\xi) x d\xi - \tau T(\tau) x - \tau x \right]$. Next, if $x \in \mathfrak{D}[A^2]$, we deduce from (4) that

(6)
$$\lambda^2 R(\lambda; A) x - \lambda x - A x = R(\lambda; A) A^2 x = A^2 R(\lambda; A) x.$$

By hypotheses, $\lim_{\lambda\to 0+} \lambda^2 R(\lambda; A)x = \theta$, so that $\lim_{\lambda\to 0+} A^2 R(\lambda; A)x = -Ax$. Thus if $x\in \mathfrak{D}[A^2]$, then $Ax\in \mathfrak{R}[A^2]$ (closed by hypothesis). In other words $\mathfrak{R}[A^2]\supset \mathfrak{D}[A]\cap \mathfrak{R}[A]$, from which it follows that $\mathfrak{D}[A]\cap \mathfrak{R}[A]=\mathfrak{D}[A]\cap \mathfrak{R}[A^2]$. Further, A is one-to-one on $\mathfrak{D}[A]\cap \mathfrak{R}[A^2]$. For, if $x\in \mathfrak{D}[A]\cap \mathfrak{R}[A]$ and $Ax=\theta$, then there exists a $y\in \mathfrak{D}[A^2]$ such that x=Ay and by (6)

(7)
$$x = Ay = \lim_{\lambda \to 0+} R(\lambda; A)A^2y = \theta.$$

We define A_1 to be the contraction of A on $\Re[A^2]$. Then A_1 is closed, one-to-one, and $\Re[A_1] = \Re[A^2]$. It follows that A_1^{-1} is a linear bounded operator [1, Theorem 2.13.9] on $\Re[A^2]$ to itself. For $y \in \Re[A^2]$, set $x = A_1^{-1}y$. Then $x \in \Im[A_1]$ and by (4)

$$R(\lambda; A)y = -x + \lambda R(\lambda; A)x.$$

Since $\lambda^2 R(\lambda; A)x \to \theta$ as $\lambda \to 0+$ by hypothesis, $\lim_{\lambda \to 0+} \lambda R(\lambda; A)y = \theta$ for all $y \in \Re[A^2]$. By a generalized version of the Banach-Steinhaus theorem [1, Theorem 2.12.2] there exists a constant M such that $\|\lambda R(\lambda; A)y\| \le M\|y\|$ for $0 < \lambda \le 1$ and all $y \in \Re[A^2]$. Hence

(8)
$$\|\lambda R(\lambda; A)y\| \leq \lambda \|A_1^{-1}\| |1 + M| \|y\|$$

for all $y \in \Re[A^2]$ and $0 < \lambda \le 1$.

 $\mathfrak{Z}[A]$ can be characterized as the set of all x such that $T(\xi)x \equiv x$. In fact, if $x \in \mathfrak{Z}[A]$,

$$T(\xi)x - x = \int_0^{\xi} \frac{dT(\tau)x}{d\tau} d\tau = \int_0^{\xi} T(\tau)Axd\tau = \theta;$$

the converse is obvious. It follows that $\mathfrak{Z}[A]$ is a closed linear subspace and that $\lambda R(\lambda;A)x\equiv x$ for each $x\in\mathfrak{Z}[A]$. Thus $\mathfrak{Z}[A]\cap\mathfrak{R}[A^2]=\phi$. On the other hand $(\mathfrak{Z}[A]\oplus\mathfrak{R}[A^2])^-=\mathfrak{X}.^2$ For if $x\in\mathfrak{D}[A^2]$, then $A^2x=z\in\mathfrak{R}[A^2]$. Let $x_1=A_1^{-2}z$; then $x_1\in\mathfrak{D}[A^2]\cap\mathfrak{R}[A^2]$. Hence $A^2(x-x_1)=0$. Applying (7) (with $y=x-x_1$), we see that $x_2=x-x_1\in\mathfrak{Z}[A]$. In other words $x=x_1+x_2\in\mathfrak{R}[A^2]\oplus\mathfrak{Z}[A]$. The conclusion then follows from the fact that $(\mathfrak{D}[A^2])^-=\mathfrak{X}$. We can, however, prove much more; in fact, $\mathfrak{X}=\mathfrak{R}[A^2]\oplus\mathfrak{Z}[A]$. Given $x\in\mathfrak{X}$, as we have just shown, there exists a sequence $x_n=y_n+z_n$ such that $x_n\to x$, $y_n\in\mathfrak{R}[A^2]$, and $z_n\in\mathfrak{Z}[A]$. Now

$$[T(\xi) - I]x_n = [T(\xi) - I]y_n = [T(\xi) - I]A^2w_n = A^2[T(\xi) - I]w_n$$

where $w_n \in \mathfrak{D}[A^2]$. Hence $[T(\xi) - I]x \in \mathfrak{R}[A^2]$ for all $\xi > 0$. Since $\mathfrak{R}[A^2]$ is closed and linear

$$\frac{6}{\tau^3}\int_0^{\tau}(\tau-\xi)\xi(T(\xi)-I)xd\xi\in\Re[A^2].$$

However, as we have seen in (5), $y(\tau) \in \mathfrak{D}[A^2]$ and as above $\mathfrak{D}[A^2]$

² (M) - denotes the closure of the set M.

 $\subset \Re[A^2] \oplus \Im[A]$. Therefore

$$x = \frac{6}{\tau^3} \int_0^{\tau} (\tau - \xi) \xi T(\xi) x d\xi - \frac{6}{\tau^3} \int_0^{\tau} (\tau - \xi) \xi [T(\xi) - I] x d\xi$$

belongs to $\Re[A^2] \oplus \Im[A]$. Thus for each $x \in \mathfrak{X}$ there exists a unique decomposition x = y + z where $y \in \Re[A^2]$ and $z \in \Im[A]$. We define the projection operator Px = z. Since both $\Re[A^2]$ and $\Im[A]$ are closed, P will be closed and since it is defined for all $x \in \mathfrak{X}$ it will be bounded [1, Theorem 2.13.9]. Now $Px \in \Im[A]$, so that $\lambda R(\lambda; A)Px = Px$. Hence by (8)

$$\|\lambda R(\lambda; A)x - Px\| = \|\lambda R(\lambda; A)(1 - P)x\| \le \lambda K \|x\|$$

and $T(\xi)$ is therefore uniformly ergodic at infinity to the projection operator P.

We remark that the converse of Theorem 1 follows directly from [1, Theorem 14.8.3 and 14.8.4].

THEOREM 2. If the semi-group operator $T(\xi)$ satisfies conditions (i) and (ii,), if $T(\xi)$ is strongly Abel ergodic at 0, and if $||a(\xi, T(\cdot)x, \alpha)|| \le M||x||$ for $0 < \xi < 1$, then $T(\xi)$ is strongly (C- α) ergodic at 0.

Condition (ii_s) can be replaced by the weaker condition $\int_0^1 ||T(\xi)x|| d\xi < \infty$ for all $x \in \mathfrak{X}$. It is interesting to note that Theorem 2 does not have its counterpart in the infinite limit. In the latter case, Hille [1, Theorem 14.7.2] has proved a much weaker theorem and this with the help of a Tauberian theorem, whereas the following proof is of an elementary nature.

By assumption, $\lim_{\lambda\to\infty} L[\lambda, T(\cdot)x] = Jx$ for all $x\in\mathfrak{X}$. As Hille has shown [1, Theorem 14.6.2], J is a bounded projection operator, $X=\mathfrak{R}[J]\oplus\mathfrak{Z}[J]$, $\mathfrak{Z}[J]=\bigcap_{\xi}\mathfrak{Z}[T(\xi)]$, and $\mathfrak{R}[J]=(\mathfrak{D}[A])^-$. Hence for any $x\in\mathfrak{X}$, x=Jx+(I-J)x=y+z. Since $y\in\mathfrak{R}[J]=(\mathfrak{D}[A])^-$, there exists a sequence $y_n\in\mathfrak{D}[A]$ such that $y_n\to y$. For $y_n\in\mathfrak{D}[A]$, $\lim_{\xi\to 0+} T(\xi)y_n=y_n$; whereas for $z\in\mathfrak{Z}[J]$, $T(\xi)z\equiv 0$. Hence

$$\lim_{\xi\to 0+} a\big[\xi, T(\cdot)(y_n+z), \alpha\big] = y_n.$$

By hypothesis $a[\xi, T(\cdot)x, \alpha]$ is a family of linear continuous operators, uniformly bounded for $\xi \in (0, 1)$. Hence the iterated limits exist and their order may be interchanged; that is,

$$\lim_{\xi \to 0+} a \left[\xi, T(\cdot) x, \alpha \right] = \lim_{\xi \to 0+} \lim_{n} a \left[\xi, T(\cdot) (y_n + z), \alpha \right]$$
$$= \lim_{\xi \to 0+} y_n = y = J(x).$$

For purposes of the following theorem, we define $\mathfrak{X}_1 = (\mathfrak{R}[A]) \oplus \mathfrak{Z}[A])^-$, A_1 to be the retraction of A on \mathfrak{X}_1 , and A_2 to be the retraction of A on $(\mathfrak{R}[A])^-$. We then have the following theorem.

THEOREM 3. If the semi-group operator $T(\xi)$ satisfies conditions (i), (ii_s), (iii), and if $||\lambda R(\lambda; A)|| \le M$ for $0 < \lambda < 1$, then $\lim_{\lambda \to 0+} \lambda R(\lambda, A)x$ exists for all $x \in \mathfrak{X}_1$, $T(\xi)\mathfrak{X}_1 \subset \mathfrak{X}_1$, and $(\Re[A])^- = (\Re[A_1])^- = (\Re[A_2])^-$.

As in Theorem 1, $\Im[A]$ is closed and $\lambda R(\lambda; A)x \equiv x$ if $x \in \Im[A]$. If $x \in \Re[A]$, then x = Ay and by (4), $\lambda R(\lambda; A)x = \lambda^2 R(\lambda; A)y - \lambda y$ so that $\lambda R(\lambda; A)x \rightarrow \theta$ as $\lambda \rightarrow 0+$. Thus this limit exists for all x $\in \Re[A] \oplus \Im[A]$ and since $||\lambda R(\lambda; A)|| \leq M$ for $\lambda \in (0, 1)$, it will exist for all $x \in \mathfrak{X}_1$. Now if x = y + z where $y \in \mathfrak{R}[A]$ and $z \in \mathfrak{Z}[A]$, then $T(\xi)z \equiv z$ and $T(\xi)y = T(\xi)Aw = AT(\xi)w$ for some $w \in \mathfrak{D}[A]$. Hence $T(\xi)x = z + AT(\xi)w$ belongs to \mathfrak{X}_1 , and since $T(\xi)$ is continuous the same applies to all $x \in \mathfrak{X}_1$. Therefore relative to \mathfrak{X}_1 , $T(\xi)$ is strongly Abel ergodic at infinity. As Hille [1, Theorem 14.6.1] has shown, there exists a bounded projection operator P_1 on \mathfrak{X}_1 such that $\lim_{\lambda\to 0+} L[\lambda, T(\cdot)x] = P_1x$ for all $x\in\mathfrak{X}_1, \mathfrak{Z}[P_1] = (\mathfrak{R}[A_1])^-, \mathfrak{R}[P_1]$ $= \mathfrak{Z}[A_1]$, and $\mathfrak{X}_1 = (\mathfrak{R}[A_1])^- \oplus \mathfrak{Z}[A_1]$. Now by the definition of \mathfrak{X}_1 , it follows that $\mathfrak{Z}[A] = \mathfrak{Z}[A_1]$. Clearly $(\mathfrak{R}[A])^- \supset (\mathfrak{R}[A_1])^-$. The converse is likewise true. For if $x \in \Re[A]$, then as above $\lambda R(\lambda; A)x \rightarrow \theta$. The same is true of $x \in (\Re[A])^-$ since $\|\lambda R(\lambda; A)\| \leq M$ for $0 < \lambda < 1$. Hence if $x \in (\Re[A])^-$, then $x \in \Im[P_1] = (\Re[A_1])^-$. Finally if $y \in \Re[A_1]$, then there exists an $x \in \mathfrak{D}[A_1]$ such that $y = A_1 x$. By the above decomposition, $P_1x \in \mathfrak{Z}[A_1]$; hence $w = (I - P_1)x \in \mathfrak{D}[A_1] \cap (\mathfrak{R}[A_1])^-$ and A_1w = y. In other words $\Re[A_2] = \Re[A_1]$.

COROLLARY 1. If $T(\xi)$ satisfies the hypothesis of Theorem 3 and if $\mathfrak{X} = (\mathfrak{R}[A] \oplus \mathfrak{Z}[A])^-$, then $T(\xi)$ is strongly Abel ergodic at infinity.

This result is slightly stronger than that obtained by Hille [1, Theorem 14.7.1 (2)].

COROLLARY 2. If $T(\xi)$ satisfies the hypothesis of Theorem 3, then $\lambda = 0$ is either in the resolvent set or in the continuous spectrum of A_2 .

Clearly $(\Re[A])^- = (\Re[A_2])^-$ rules out the residual spectrum and $\Im[A] \cap (\Re[A])^- = \phi$ rules out the point spectrum.

Hille has conjectured [1, p. 295] that a semi-group operator satisfying the hypothesis of Theorem 3 and such that $\lambda = 0$ does not belong to the residual spectrum of either A or A_2 would necessarily be strongly Abel ergodic at infinity. It is clear from Corollary 2 that the condition imposed on A_2 is already implied by the other restrictions. Thus in order to construct a counter-example to this conjecture it

will be sufficient to produce a non-Abel-ergodic semi-group satisfying the hypothesis of Theorem 3 and having $\lambda = 0$ in the point spectrum of A. This we do in the following example.

EXAMPLE 1. Let $\mathfrak{X} = m$, the space of bounded sequences $\{a_n\}$, with norm $\|\{a_n\}\| = \text{LUB } |a_n|$. We define $T(\xi)\{a_n\} = \{a'_n\}$ by

$$a_0' = a_0,$$

 $a_n' = a_n \exp(-i\xi/n)$ for $n \ge 1$.

Clearly $||T(\xi)|| = 1$, and

$$||(T(\xi) - I)\{a_n\}|| \le ||\{a_n\}|| \cdot |\exp(i\xi) - 1|.$$

Thus $T(\xi)$ is uniformly continuous at the origin and hence A is a linear bounded operator. In fact for $A\{a_n\} = \{a'_n\}$, we have

$$a_0' = 0,$$
 $a_n' = ia_n/n$ for $n \ge 1.$

It is clear that $\lambda = 0$ is in the point spectrum of A. Finally if we have $\lambda R(\lambda; A) \{a_n\} = \{a'_n\}$, then

$$a_0' = a_0,$$

 $a_n' = a_n n \lambda / (n \lambda + i)$ for $n \ge 1$,

and since $|n\lambda/(n\lambda+i)| \le 1$ for $\lambda > 0$, it follows that $||\lambda R(\lambda; A)|| \le 1$ for $\lambda > 0$. Now if $T(\xi)$ were strongly ergodic at infinity to the projection operator P, then

$$\Re[P] = \Im[A] = [(b, 0, 0, 0, \cdots)].$$

However this limit fails for $\{a_n \equiv 1\}$ since

$$\|(\lambda R(\lambda; A) - P)(1, 1, \cdots)\| = \|(0, \cdots, n\lambda/(n\lambda + i), \cdots)\| = 1$$
 for all $\lambda > 0$.

EXAMPLE 2. We next define a semi-group operator $T(\xi)$ satisfying conditions (i), (ii_u), (iii) and such that $\limsup_{\xi\to 0+} \|T(\xi)\| = \infty$. We start with a sequence of two-dimensional normed linear spaces \mathfrak{X}_n and define \mathfrak{X} to be the set of all sequences $\{x_n\in\mathfrak{X}_n\}$ such that $\sum \|x_n\|<\infty$, with norm $\|\{x_n\}\|=\sum \|x_n\|$. \mathfrak{X}_n itself is defined as the set of all complex-valued pairs $x_n=(y,z)$ with norm $\|x_n\|=(|y|^2+n|z|^2)^{1/2}$. We now define a semigroup operator $T_n(\xi)x_n=x_n'$ on \mathfrak{X}_n to \mathfrak{X}_n such that

$$y' = \exp \left[-(n + in^3)\xi \right] (y \cos n\xi - z \sin n\xi),$$

 $z' = \exp \left[-(n + in^3)\xi \right] (y \sin n\xi + z \cos n\xi).$

It is clear that $||T_n(\xi)|| \le n^{1/2} \exp(-n\xi)$ and that $||T_n(\pi/2n)||$

 $=n^{1/2}\exp\left(-\pi/2\right)$ [as can be seen by operating on (1,0)]. The semi-group operator $T(\xi)$ is defined by $T(\xi)\left\{x_n\right\}=\left\{T_n(\xi)x_n\right\}$. It follows from the way the norm in X has been defined that $\|T(\xi)\|=\text{LUB}\ \|T_n(\xi)\|\leq (2e\xi)^{-1/2}$. Now $T_n(\xi)x_n$ is clearly continuous in ξ , and since the $\lim_k\sum_{k=1}^\infty \|T_n(\xi)x_n\|=0$ uniformly in $\xi\geq \delta>0$, $T(\xi)\left\{x_n\right\}$ will itself be strongly continuous for $\xi>0$. In this case $\|T(\xi)\|$ is measurable and, from the above upper bound, we have

$$\int_0^\infty \exp\left(-\lambda\xi\right) \left\|T(\xi)\right\| d\xi \le \int_0^\infty \exp\left(-\lambda\xi\right) (2e\xi)^{-1/2} d\xi < \infty \quad \text{for } \lambda > 0.$$

Further, since $||T(\pi/2n)|| \ge n^{1/2} \exp(-\pi/2)$, $\limsup_{\xi \to 0+} ||T(\xi)|| = \infty$. It remains to show that (iii) is satisfied. We define

$$S(\eta)x = \eta^{-1} \int_0^{\eta} T(\xi)xd\xi = \{S_n(\eta)x_n\}.$$

Here

$$S_n(\eta)x_n = \eta^{-1}\int_0^{\eta} T_n(\xi)x_n d\xi = x_n' = (\alpha(\eta)y - \beta(\eta)z, \beta(\eta)y + \alpha(\eta)z)$$

where

$$lpha(\eta) = \eta^{-1} \int_0^{\eta} \exp \left[-(n+in^3)\xi \right] \cos n\xi d\xi,$$

$$\beta(\eta) = \eta^{-1} \int_0^{\eta} \exp \left[-(n+in^3)\xi \right] \sin n\xi d\xi.$$

A straightforward calculation shows that $|\alpha(\eta)| \le 1$ and $|\beta(\eta)| \le 2/n^2$. Hence for $|y|^2 + n|z|^2 = 1$,

$$|y'|^{2} + n|z'|^{2} \leq |y|^{2} + n|z|^{2} + (4/n)|y||z| + (4/n^{2})|y||z|$$

$$+ (4/n^{2})|y|^{2} + (4/n^{4})|z|^{2}$$

$$\leq 1 + 16/n \leq 17.$$

Therefore $||S(\eta)|| \le \text{LUB } ||S_n(\eta)|| \le 17$. For ultimately zero vectors, it is clear that $T(\xi)x \to x$ as $\xi \to 0+$ and hence that $S(\eta)x \to x$ as $\eta \to 0+$. Since such vectors are dense in \mathfrak{X} and since $||S(\eta)|| \le 17$, it follows that $S(\eta)x \to x$ as $\eta \to 0+$ for all $x \in \mathfrak{X}$.

Example 3. We conclude with an example of a strongly continuous group operator $T(\xi)$ on $(-\infty, \infty)$ for which $||T(\xi)||$ is not continuous. This example settles a question raised by Hille [1, p. 184]. As in Example 2, $\mathfrak{X} = \prod \mathfrak{X}_n$ and $||x|| = \sum ||x_n||$. In this case, however, $||x_n|| = |y|$

+|z|, and $T_n(\xi)x_n=x'_n$ is defined by

$$y' = y \cos n\xi - z \sin n\xi$$
, $z' = y \sin n\xi + z \cos n\xi$,

which is simply a rotation in \mathfrak{X}_n . Since the unit sphere in \mathfrak{X}_n is a square, the maximum expansion will be $2^{1/2}$. Hence $||T(\xi)|| = \text{LUB} ||T_n(\xi)|| \le 2^{1/2}$. For $\xi = k\pi$ $(k=0, \pm 1, \pm 2, \cdots)$, $||T(\xi)x|| = ||x||$ so that $||T(k\pi)|| = 1$. For $n\xi = (nk \pm 1/4)\pi$, set $x_n = (1, 0)$ and $x_j = \theta$ for $j \ne n$. Then $x'_n = (\pm 1/2^{1/2}, \pm 1/2^{1/2})$ so that $||T[(k \pm 1/4n)\pi]|| = 2^{1/2}$. Therefore $||T(\xi)||$ is discontinuous at the points $k\pi$. One can show as in Example 2 that $T(\xi)x$ is strongly continuous on $(-\infty, \infty)$.

REFERENCES

- 1. Einar Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publications, vol. 31, New York, 1948.
- 2. R. S. Phillips, On one-parameter semi-groups of linear transformations, Proceedings of the American Mathematical Society vol. 2 (1951) pp. 234-237.

THE UNIVERSITY OF SOUTHERN CALIFORNIA