A NOTE ON ERGODIC THEORY
R. S. PHILLIPS

The purpose of this paper is to present solutions to certain problems
in ergodic theory suggested by Einar Hille in his book Functional
analysis and semi-groups [1].1

Let T(£) (£>0) be a semi-group of linear bounded transformations
on a complex Banach space ¥ to itself. Following Hille, we say that
T(¢) is ergodic at infinity (or at 0) if it has a generalized limit of
some sort when {é—> (or 04). We define the Abel mean

1) L TC)w) = [ exp (-N)T@) e

0

and the Cesaro-a (C-a) mean
¢
(2) alg, T( )%, a] = af“"f (¢ — 7)o 1T (1) xdr.
0

In order that the integrals involved shall have a sense, we impose the
following restrictions on T'(§):

(i)  T(%) is strongly measurable for £ > 0,
(ii,) f exp (—M)||T(®)#||dE exists for N > 0 and all x € ¥
0

or

(i) f " exp (—2)|| T®)|| ¢ exists for A > 0.
0

In theorems referring to limiting processes at infinity we shall also
impose the restriction

n
(iii) lim 57! f T(¢)xdt = x for all x € %.
70+ 0

Condition (i) alone implies that T'(£) is strongly continuous for
£>0 (see [1, Theorem 9.2.1] and [2]); whereas (ii,) implies the exist-
ence of the Abel mean for A>0. If (ii,) is satisfied, the infinitesimal
generator 4 of the semi-group operator will be a closed linear trans-
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formation. If conditions (i), (ii,), and (iii) are all satisfied, then the
resolvent theory (see [1, sec. 11.8]) is valid; in particular the linear
bounded operator

® RO )5 = [ exp (-NT@ e
0
exists for Re (A\) >0, satisfies the first resolvent equation, and
@ (M — A)R(\; A)x = x for x €%,
RO AN — A)x = « for x €D[4],

where D[4 ], the domain of 4, is now dense in ¥. It will be shown in
Example 2 that conditions (i), (ii.), and (iii) do not imply the
boundedness of ||T(£)|| in a neighborhood of the origin. Finally, if U
is a linear operator on ¥ to itself, we denote by R[U] the range of
U and by 8[U] the zeros of U.

Our principal result is the proof of the following theorem conjec-
tured by Hille [1, p. 301].

THEOREM 1. If the semi-group operator T(£) satisfies conditions (i),
(ily), (iii); and if in addition R[A?] is closed and limy .oy N2R(\; 4A)x
=0 for all xE€%, then T(£) 1s Abel ergodic at infinity in the uniform
topology.

We first show that D[A?] is dense in X. In fact, for any x €%, set

6 T
) = = f (r — DET(E)ud

= % j; (25 — T)s(s"l fo ’T(g)xdg)ds.

It follows from (iii) that y(r)—x as 7—0+. Hence it will be sufficient
to show that y(r)ED[A?]. However a straightforward calcula-
tion (compare with [1, Theorem 11.5.1]) shows that Ay(r)=
(6/7%) [5(r — 28) T(£)xdt and A%y(r) = (6/7%) [2/5T(§)xdE —7T(r)x —7x].
Next, if *ED[A4?], we deduce from (4) that

(6) MR(\; A)x — Nx — Ax = R(\; A)A%x = A*R(\; A)x.

By hypotheses, limy.o+ A2R(\; 4)x =0, so that limy.oy A2R(\; 4)x
= —Ax. Thus if x€D[A42], then AxER[A?] (closed by hypothesis).
In other words R[42]DD[A]NR[4], from which it follows that
D[AINR[A]=D[4]NR[A42]. Further, 4 is one-to-one on D[A4]
NR[A2]. For, if x€D[A]NR[A] and Ax=0, then there exists a
yED[A?] such that x=A4y and by (6)

)
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) x=Ay = lim R(\; 4)A%y = 0.
A0+

We define 4; to be the contraction of A on R[42]. Then 4, is closed,
one-to-one, and R[A4;]=R[4?]. It follows that A]' is a linear
bounded operator [1, Theorem 2.13.9] on %[A?] to itself. For ¥
ER[A?], set x=A["'y. Then xED[4,] and by (4)

R\; A)y = — x4+ AR(\; 4)x.

Since M?R(\; A)x—0 as A—0+ by hypothesis, limy.o AR(\; 4)y=0
for all yER[A?]. By a generalized version of the Banach-Steinhaus
theorem [1, Theorem 2.12.2] there exists a constant M such that
[INR(N; A)y|| < Mly|| for 0XKN=<1 and all yER[A?]. Hence

8) IR A)sl] = M43 | 1+ 2] ]3]

for all yER[A2] and 0<A=1.
B[4] can be characterized as the set of all x such that T(¢)x=x.
In fact, if t€3[4],

¢ g
TEHx— x = f de(:)xdT = f T(r)Axdr = 0;
0 0

the converse is obvious. It follows that 8[4] is a closed linear sub-
space and that AR(\; A)x=x for each xE3[4]. Thus 3[4 ]"\R[A42]
=¢. On the other hand (3[4 ]®R[A42])-=%.2 Forif x€D[A42], then
A% =2ER[A?]. Let x,=A7%; then x,ED[42]"\R[A2]. Hence
A?(x—x1)=0. Applying (7) (with y=x—x,), we see that xo=x—x,
€3[4]. In other words x=x;+x,ER[42]®3[4]. The conclusion
then follows from the fact that (D[A42])~=%. We can, howgver, prove
much more; in fact, ¥=R[42]®3[4]. Given xE¥, as we have just
shown, there exists a sequence x, = y.+2, such that x,—x, y,ER[4?],
and z,E3[4]. Now

[T() = Ilxw = [T() — Ily. = [T(®)— I]4?w, = A2[T() — I]w,

where w,ED[A4?]. Hence [T(§)—I]xER[A?] for all £>0. Since
R[A?] is closed and linear

6 T
= f (r = DETE) — Dade € R[47].

However, as we have seen in (5), y(r) ED[42] and as above D[A4?]

2 (M)~ denotes the closure of the set M.
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Ch[A2]®B3[A4]. Therefore
6 T 6 T
5= f (- — DET@)dt - — f (r — DE[T() — I)ede

belongs to R[42]® 3[4 ]. Thus for each xEX there exists a unique
decomposition x =y+z where yER[A4?] and & 3[4 ]. We define the
projection operator Px =z. Since both %t[A42] and 3[A4] are closed, P
will be closed and since it is defined for all x&¥ it will be bounded
[1, Theorem 2.13.9]. Now Px&3[A4], so that AR(\; 4)Px=Px.
Hence by (8)

AR\ )z — Paf| = [[NR(; 4)(1 — P)al| = MK]|«]|

and T'(§) is therefore uniformly ergodic at infinity to the projection
operator P.

We remark that the converse of Theorem 1 follows directly from
[1, Theorem 14.8.3 and 14.8.4].

THEOREM 2. If the semi-group operator T () satisfies conditions (i)
and (ii,), if T(§) is strongly Abel ergodic at 0, and if ||a(¢, T(:)x, o)l
=M ”x” for 0<E<, then T(§) 1s strongly (C-a) ergodic at 0.

Condition (ii,) can be replaced by the weaker condition f&“ T(E)x”d‘g’
< o for all x&¥. It is interesting to note that Theorem 2 does not
have its counterpart in the infinite limit. In the latter case, Hille [1,
Theorem 14.7.2] has proved a much weaker theorem and this with
the help of a Tauberian theorem, whereas the following proof is of
an elementary nature.

By assumption, limy.,, L[\, T(-)x] = Jx for all x&¥%. As Hille has
shown [1, Theorem 14.6.2], J is a bounded projection operator,
x=R[J]@3[J], 8[71=n:3[T®] and R[J]=(D[4])~. Hence for
any x€¥%, x=Jx+(I—J)x=y+z. Since yER[T]=(D[4])~, there
exists a sequence y,ED[4] such that y,—y. For y,ED[4],
limg_oy T(£)yn=7n; whereas for zE3[J], T(£)z=0. Hence

lim a[g, T(-)(ya + 2), @] = ya.
E0+
By hypothesis a[£, T(-)x, a]is a family of linear continuous operators,

uniformly bounded for £&(0, 1). Hence the iterated limits exist and
their order may be interchanged; that is,

lim af¢, T(:)%, @) = lim lim a[§, T(-)(yx + 2), ]
-0+ &0+ n

= lim y, = y = J(x).
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For purposes of the following theorem, we define ¥;=(R[4]
@®3[A])—, 4, to be the retraction of 4 on ¥;, and 4; to be the re-
traction of 4 on (R[4 ])~. We then have the following theorem.

THEOREM 3. If the semi-group operator T(£) satisfies conditions (i),
(iis), (iii), and if |[NR(\; 4)|| £ M for 0 <N <1, then limy.ox AR(\, 4)x
exists for all xE€%,, T()%:.C¥%, and (R[A])—=R[4:])~=R[4:])~.

As in Theorem 1, 3[4] is closed and AR(\; A)x= x if x€3[4].
If xER[A], then x=Ay and by (4), AR(\; 4)x=N2R(\; A)y—\y
so that AR(\; 4)x—f0 as A—>0+4. Thus this limit exists for all x
€ER[A])®3[A4] and since || AR(\; 4)|| £ M for NE(0, 1), it will exist
for all x€¥,. Now if x=y+42 where yER[A4] and z2€3[4], then
T()z=z and T(§)y=T¢) Aw=AT(§)w for some wED[4]. Hence
T(E)x=2+AT()w belongs to %;, and since T(¢) is continuous the
same applies to all xE¥%;. Therefore relative to ¥;, T(§) is strongly
Abel ergodic at infinity. As Hille [1, Theorem 14.6.1] has shown,
there exists a bounded projection operator P; on ¥; such that
limy.op L[\, T(:)x]=Pix for all x€%, 3[P:]=@R[4:1])~, R[P:]
=38[4,], and ¥, = (R[4.])-®3[4.]. Now by the definition of %, it
follows that 3[4 ] = 3[A4:]. Clearly (R[4])-D(®[41])~. The converse
is likewise true. For if x€%R[4 ], then as above AR(\; 4)x—#f. The
same is true of x& (R[4 ])~ since [AR(\; 4)|| £ M for 0 <A< 1. Hence
if x€(®R[A4])-, then xE3[P:] = (R[A4:])~. Finally if yER[A,:], then
there exists an x €D [4,] such that y=A4,x. By the above decomposi-
tion, PixE3[41]; hence w= (I —P)xED[4:]NR[4.])~ and 4w
=+v. In other words R [4:] =R[4:].

CoroLLARY 1. If T(§) satisfies the hypothesis of Theorem 3 and if
¥=R[A]DB[A])-, then T(§) is strongly Abel ergodic at infinity.

This result is slightly stronger than that obtained by Hille [1,
Theorem 14.7.1 (2)].

COROLLARY 2. If T(§) satisfies the hypothesis of Theorem 3, then A =0
is either in the resolvent set or in the continuous spectrum of A,.

Clearly (R[4])—=®R[4:])~ rules out the residual spectrum and
B[A]NR[A])~=¢ rules out the point spectrum.

Hille has conjectured [1, p. 295] that a semi-group operator satis-
fying the hypothesis of Theorem 3 and such that A =0 does not be-
long to the residual spectrum of either 4 or 4; would necessarily be
strongly Abel ergodic at infinity. It is clear from Corollary 2 that the
condition imposed on 4. is already implied by the other restrictions.
Thus in order to construct a counter-example to this conjecture it
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will be sufficient to produce a non-Abel-ergodic semi-group satisfying
the hypothesis of Theorem 3 and having A =0 in the point spectrum
of A. This we do in the following example.

ExAMPLE 1. Let ¥=m, the space of bounded sequences {a.}, with
norm || {a.}|| =LUB | a.|. We define T'(¢) {a.} = {a,} by

!
@y = Qo,

Gn = Gn exp (—it/n) for n = 1.
Clearly | T'(¢)|| =1, and

lr® = Dieall = [[{en}l]- | exp () — 1).
Thus T'(¢) is uniformly continuous at the origin and hence 4 is a
linear bounded operator. In fact for 4 {a,} = {a,}, we have
aj =0,
a, = ia,/n for n = 1.
It is clear that A\=01is in the point spectrum of 4. Finally if we have
AR(\; 4) {a.} = {a,}, then
ai = ao,
aq = aunN/(n\ + 1) for n = 1,
and since |n\/(n\+1)| <1 for A>0, it follows that |AR(\; 4)|| =1

for A>0. Now if T'(¢) were strongly ergodic at infinity to the projec-
tion operator P, then

ER[P] =«8[A] = [(b» 0,00,:-- )]'
However this limit fails for {a,=1} since
IORM; 4) = PY(A, 1, Ol = [, -, /(x4 ), )l = 1

for all A>0.

ExAMPLE 2. We next define a semi-group operator T'(£) satisfying
conditions (i), (ii.), (iii) and such that lim sup;.o+ ||T($)|| =o. We
start with a sequence of two-dimensional normed linear spaces ¥, and
define ¥ to be the set of all sequences {x,E¥,} such that Y||x./| < =,
with norm || {x.}|| = X_||%.||. %. itself is defined as the set of all com-
plex-valued pairs x,=(y, z) with norm ”x,.” =(!y|2+nlz[2)‘/2. We
now define a semigroup operator T,(£)x,=x, on %, to ¥, such that

/

y' = exp [—(n + in3)E](y cos nt — z sin nf),
z/ = exp [—(1_1 + n3)E](y sin nt + 2 cos nf).
It is clear that ||T,.(£)|| <nY? exp (—nf) and that ]|T,.(1r/2n)]|



1951] A NOTE ON ERGODIC THEORY 669

=n!? exp (—m/2) [as can be seen by operating on (1, 0)]. The semi-
group operator T'(§¢) is defined by T'(§) {xn} = {T,.(.f)x,.}. It follows
from the way the norm in X has been defined that ”T (E)“
=LUB ||TW(8)|| < (2e£)~V2. Now Tw(£)x. is clearly continuous in £,
and since the lim; E;’”T,.(E)x,.“ =0 uniformly in £=6>0, T(§) {x,.}
will itself be strongly continuous for £>0. In this case ”T (.E)H is
measurable and, from the above upper bound, we have

f “exp (—2)|| (@) dt = f “exp (—MN)Q2e)VE < @ for A > 0.
0 0

Further, since ][T(1r/2n)” =n'? exp (—m/2), lim sup;.os “T(E)” =,
It remains to show that (iii) is satisfied. We define

Sty = [ 1@tk = (Su(n)s).
Here
S =17 [ 1@t = 5! = (ala)y — B0}, B0 + aln)0)
where

al) = 771 f exp [= (n + in¥)t] cos nidk,
0

B(m) = n? f exp [—(n + in3)t] sin nkds.
0

A straightforward calculation shows that |a(n)| <1 and lﬁ(n)l
<2/n% Hence for |y|2+n|s]|2=1,

|y P+l P2yl +nlsl2+ @n)|y]lz] + @n)]y]] ]
+ @/ |y [P+ @/
<14 16/n £ 17.

Therefore “S(n)“ <LUB ”S,.('r;)” =17. For ultimately zero vectors,
it is clear that T'(§)x—x as {04 and hence that S(5)x—x as —0+.
Since such vectors are dense in ¥ and since ||S(5)|| 17, it follows
that S(n)x—x as n—0+ for all xEX.

ExaMPLE 3. We conclude with an example of a strongly continuous
group operator T'(§) on (— », «) for which || T(E)“ is not continuous.
This example settles a question raised by Hille [1, p. 184]. As in
Example 2,% =] [%,and||x|| = X_||«| . In this case, however, ||| = | y]|
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+ | z| , and T,(£)x,=x, is defined by
¥y’ = ycos nf — z sin né, 2’ = ysin n¢ + 3 cos né,

which is simply a rotation in %,. Since the unit sphere in %, is
a square, the maximum expansion will be 2V2, Hence ||T(§)
=LUB [|T.())|| £2V% For &=kr (k=0, +1, +2,---), |[T@®)x
=||%[| so that || T'(kr)|| =1. For nt=(nk+1/4)x, set x,=(1, 0) and
x;=0 for j=n. Then x,=(+1/2V2, +1/2Y2) so that || T [(k + 1/4n)7]|
=212, Therefore ||T(£)|| is discontinuous at the points k. One can
show as in Example 2 that T'(£)x is strongly continuous on (— «©, »),
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