NOTE ON A THEOREM OF GELFAND AND ŠILOV

FULTON KOEHLER

The purpose of this note is to give a simplified proof of a theorem of Gelfand and Silov in the theory of normed, commutative rings.

Let K be a complex Banach space which is also a commutative ring with unit element e, the norm being subject to the conditions ||e|| = 1 and $||xy|| \le ||x|| ||y||$ for all x and y in K. Let \mathcal{M} be the space of maximal ideals of K. Then, for each element $x \in K$, and each maximal ideal $M \in \mathcal{M}$, there is a unique complex number x(M) defined by

$$x \equiv x(M)e \pmod{M}$$

and having the following properties:

$$e(M) = 1,$$

(2)
$$(x + y)(M) = x(M) + y(M),$$

$$(xy)(M) = x(M)y(M),$$

$$(4) \qquad (\alpha x)(M) = \alpha x(M),$$

$$|x(M)| \leq ||x||,$$

for all x and y in K and any complex number α [1].

Gelfand [1] introduces a topology in \mathcal{M} by defining a neighborhood U of M_0 as follows:

$$U = \{M; |x_i(M) - x_i(M_0)| < \alpha_i; x_i \in K; \alpha_i > 0; i = 1, 2, \dots, k\};$$

and he proves that in this topology, \mathcal{M} is a compact Hausdorff space, and that this is the unique topology in which all functions x(M), $x \in K$, are continuous and \mathcal{M} is compact.

If the ring K also has the property that, for every $x \in K$, there exists an $x^* \in K$ such that x(M) and $x^*(M)$ are complex conjugates for all M, then the functions x(M) are dense in the set of all continuous functions on \mathcal{M} . This result is proved by Gelfand and Šilov [2] by a method depending on two other topologies in the space \mathcal{M} . We give here a simpler and more direct proof of this theorem, making use of only the one topology defined above.

LEMMA. If F_1 and F_2 are any two disjoint closed sets in \mathcal{M} , and $0 < \epsilon_1 < 1$, $0 < \epsilon_2 < 1$, there exists an $x \in K$ such that

Received by the editors July 24, 1950.

¹ Numbers in brackets refer to the references at the end of the paper.

$$0 \le x(M) \le 1, \qquad M \in \mathcal{M},$$

$$0 \le x(M) \le \epsilon_1, \qquad M \in F_1,$$

$$1 - \epsilon_2 \le x(M) \le 1, \qquad M \in F_2.$$

PROOF. Let $M_0 \in F_1$. Let $U = \{M; |x_i(M) - x_i(M_0)| < \alpha; i = 1, 2, \cdots k\}$ be a neighborhood of M_0 which does not intersect F_2 . Let $x_i' = x_i - x_i(M_0)e$, $y' = \sum_{i=1}^k x_i'(x_i')^*$. Then y'(M) is non-negative for all M, is zero for $M = M_0$, and has a positive lower bound α^2 for $M \in F_2$. Let y = y'/||y'||, $2\delta = \alpha^2/||y'|| \le 1$; then

$$0 \le y(M) \le 1, \qquad M \in \mathcal{M},$$
$$y(M_0) = 0,$$
$$0 < 2\delta \le y(M) \le 1, \qquad M \in F_2.$$

With each $M_0 \in F_1$ we associate a y with the properties just given and a neighborhood of $M_0: U = \{M; y(M) < \delta\}$. From these neighborhoods we select a finite covering of F_1 , denoted by U_1, U_2, \cdots, U_N , and we let the y and δ associated with U_k be denoted by y_k and δ_k . Now let $z_k = e - (e - y_k^n)^m$, where n and m are positive integers. We then have

$$0 \leq z_{k}(M) \leq 1, \qquad M \in \mathcal{M},$$

$$0 \leq z_{k}(M) < 1 - (1 - \delta_{k}^{n})^{m}, \qquad M \in U_{k},$$

$$1 - (1 - 2^{n} \delta_{k}^{n})^{m} \leq z_{k}(M) \leq 1, \qquad M \in F_{2}.$$

If, for each value of n, we now choose m as the integer nearest $(2/3\delta_k)^n$, then, as $n \to \infty$, $m \log (1 - \delta_k^n) \to 0$ and $m |\log (1 - 2^n \delta_k^n)| \to \infty$; hence $(1 - \delta_k^n)^m \to 1$ and $(1 - 2^n \delta_k^n)^m \to 0$. This follows from the inequality $h < |\log (1 - h)| < 2h$ for $0 < h \le 1/2$. We can therefore choose n so large that

$$0 \le z_k(M) < \epsilon_1,$$
 $M \in U_k,$ $(1 - \epsilon_2)^{1/N} \le z_k(M) \le 1,$ $M \in F_2.$

The function $x = z_1 z_2 \cdot \cdot \cdot z_N$ will then satisfy the conditions of the lemma.

THEOREM. For any complex-valued function f(M), continuous on \mathcal{M} , and any $\epsilon > 0$, there exists an $x \in K$ such that $|f(M) - x(M)| < \epsilon$ for all M.

PROOF. We first prove the theorem for a real-valued continuous function f(M). Let K_R be the set $\{x\}$ where $x \in K$ and x(M) is real-valued, and let

$$a = \inf_{x \in K_R} \sup_{M \in \mathcal{M}} |f(M) - x(M)|.$$

Let us assume a>0. Then there exists an $x_0 \in K_R$ such that

$$\sup_{\mathbf{M}\in\mathcal{M}} |f(\mathbf{M}) - x_0(\mathbf{M})| < 1.1a.$$

Let $g(M) = f(M) - x_0(M)$, and let

$$F_1 = \{M; g(M) \ge .5a\},\$$

$$G = \{M; |g(M)| < .5a\},\$$

$$F_2 = \{M; g(M) \le - .5a\}.$$

By the preceding lemma we can find $x_1 \in K_R$, $x_2 \in K_R$ such that

$$0 \leq x_1(M) \leq .4a, \qquad 0 \leq x_2(M) \leq .4a, \qquad M \in \mathcal{M},$$

$$0 \leq x_1(M) \leq .1a, \qquad .3a \leq x_2(M) \leq .4a, \qquad M \in F_2,$$

$$.3a \leq x_1(M) \leq .4a, \qquad 0 \leq x_2(M) \leq .1a, \qquad M \in F_1.$$

If $x = x_0 + x_1 - x_2$, then $x \in K_R$ and

$$|f(M) - x(M)| < .9a$$
, for all $M \in \mathcal{M}$.

This is a contradiction; hence a=0 for any real-valued continuous f(M).

If f(M) is complex-valued, we can apply the result just proved to the real and imaginary parts of f(M) separately.

REFERENCES

- I. Gelfand, Normierte Ringe, Rec. Math. (Mat. Sbornik) N.S. vol. 9 (1941) pp. 3-24.
- 2. I. Gelfand and G. Šilov, Ueber verschiedene Methoden der Einfuehrung der Topologie in die Menge der maximalen Ideale eines normierten Ringes, Rec. Math. (Mat. Sbornik) N.S. vol. 9 (1941) pp. 25-39.

THE UNIVERSITY OF MINNESOTA