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HAS A POSITIVE REAL PART
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1. Introduction and summary. If D is a domain in the finite com-

plex plane and/(z) is holomorphic in D, the nonvanishing off'(z) in D

is a necessary condition for the univalence of f(z) in D. That the con-

dition is not sufficient follows from the fact that the function e* is not

schlicht in the domain \z\ <R, when R>ir. On the other hand, it was

shown by K. Noshiro [l, Theorem 12, p. 151J1 and by S. E. War-

schawski [2, Lemma 1, p. 312] (the Noshiro-Warschawski Theorem

being a generalization of a previous result by J. Wolff [3]) that every

convex domain D has the property that

(U)   f(z) is schlicht in D whenever 9x/'(z) >0 throughout D.

There exist nonconvex domains that have property (U)—any

domain obtained by deleting a finite point-set from a convex domain

will do. On the other hand, if 7r/2 <ß = ir, the domain defined by the

inequality — ß<arg z<ß does not have the property (U), as is seen

by examining the function/(z) =21+',2p (with/(l) = 1). We shall show

that if a domain has the property (U) it does not fall far short of

being convex.

In order to describe our results in more convenient language, we

introduce the following definitions: Let D be a domain and 77 the

interior of its convex hull ; the set of deficiency of D with respect to

convexity (more briefly: the set of deficiency of D) shall be the comple-

ment of D relative to 77. It is obvious that the set of deficiency of D

is closed relative to 77 and that it is empty if and only if D is convex;

also that the set of deficiency of a domain is the minimal set whose

union with the domain is convex. A domain shall be said to be almost

convex provided every pair of open circles in D can be connected by a

line segment lying entirely in D. The following constitutes our main

result. (See Theorems 1 and 2.)

7« order that a domain D have property (U), it is necessary that the

set of deficiency of D be totally disconnected and sufficient that D be

almost convex.

This result does not characterize the domains that have property

(U) ; for there exist domains that fail to be almost convex although

their sets of deficiency are totally disconnected. (See §4, Case (iii).)

But it does characterize the domains with property (U) among the
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domains of finite connectivity:

A domain of finite connectivity has the property (U) if and only if its

set of deficiency is finite or empty.

2. Domains whose sets of deficiency are not totally disconnected.

A set is not totally disconnected provided it contains a nondegenerate

continuum, that is, a connected closed set consisting of at least two

points.

Theorem 1. A domain whose set of deficiency is not totally discon-

nected does not have property (U).

It is to be shown that, if the set of deficiency 5 of the domain D con-

tains a nondegenerate continuum, there exists a function f(z) not

schlicht in D, but with the real part of its derivative positive through-

out D. The proof is by construction. We deal separately with two

cases:

(I) 5 has interior points;

(II) each point of 5 is a boundary point of D.

In dealing with Case (I), we need the following geometrical propo-

sition.

Lemma. If the set of deficiency of a domain D has interior points,

there exists a circular domain, exterior to D, whose boundary meets the

boundary of D in at least two points.

In proving this lemma, the coordinates may be chosen in such a way

that the origin is an interior point of S, the set of deficiency of D.

The transformation z* = l/z then maps the domain D in the z-plane

into a bounded domain D* in the 2*-plane. Let P* be the open circu-

lar disc of least radius that contains D*, and let P be the image in the

z-plane of P*\ then the boundary of P meets the boundary of D in at

least two points. Since the point at infinity in the z*-plane is exterior

to r*, the origin in the z-plane is exterior to P. This implies that P

is the outside of a circle K; for otherwise P would be a half-plane or a

circular disc, and since P contains D, the origin would be exterior

to the convex hull of D, contrary to the hypothesis. It follows that

the inside of K has the required properties.

Suppose, then, that 5 has interior points and that C is a circle

passing through at least two boundary points of D and containing

no points of D in its inside. Again two cases arise:

(la) there exist points on C that are not boundary points of D;

(lb) all points on C are boundary points of D.

The particular choice of coordinates used in proving the lemma will

now be discarded, and at each stage we shall use whatever coordinate
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system is most suitable to our purpose.

Case (la). Let C be identical with the unit circle; let 0<a<x, and

let eia and e~ia be boundary points of D, while the open arc on C

lying between them and passing through the point z = l is free of

boundry points of D.

Let 7,o denote the lemniscate r2 = cos 2d, where r and d are polar

coordinates in the z-plane; then the distance between D and the

right loop of 7,o is positive. Now for every pair of points Zi and z2

that lie near enough to eia and e~ia, respectively, there exists a unique

lemniscate L(zi, z2) with the following properties:

(i) the center and vertices of 7,(zi, z2) lie on the perpendicular bi-

sector of the line segment joining zi and z2;

(ii) the left loop of L(zi, z2) is tangent to the unit circle C from the

inside of C;

(hi) the circle which is concentric with L(zi, z2) and passes through

its vertices also passes through the points Zi and z2.

As zx—>eia and z2—>e~ia, L(zi, z2) approaches 7,0 in the obvious sense

of the word; it is therefore possible to choose Zi and z2 in D (zi^Zi)

in such a way that no point of D lies inside or on 7,(zi, z2).

Having chosen such a pair of points, we use a transformation Ç = az

+ 6 to map 7,(zi, z2) onto the lemniscate Ao whose equation in the

polar coordinates of the ¿"-plane is p2 = cos 2(p. By fi, f2, and A, re-

spectively, we denote the images of z%, z2, and D under this trans-

formation. The points f i and f2 are then distinct points in A, conjugate

to one another and of unit modulus; and the lemniscate Ao contains

no points of A. If g(Ç)=t+Ç-\ then g(U)=g(U) and 5Rg'(f) = l
— p~2 cos 2</>>0 lor all points f outside of Ao, in particular, for all

points of A. It follows that the function

'CO - ««(f) = <H(«z + *) + (« + b)~ll

has the required properties.

Case (lb). Again let C be the unit circle. We use the function

(1) f(z) =Vz- (z2 - a2)"1'2 = r,z - z~l(l - 8*/**)-"*,

where r¡ and a are real constants whose values are to be determined

below,   subject   to   the   conditions   v>l,   0<a<l;   and   where

(1— a2/z2)~112 has the value one at z= w. In the domain \z\ >a,f(z)

is holomorphic and odd.

From(l) it follows that

f'(z) = r, + z~2 + — a2z~* + ¿ cna2«z-2»-2,
2 n-2
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where cn= (3/2)(5/4) • • • [(2« + l)/2«]. The function/'(z) is holo-

morphic for | z| = 1, including z = °o ; ¡f we can choose the constant a so

that 9î/'(z)>0 for \z\ =1, it will follow that 9î/'(z)>0 for \z\ >1,
hence also for zED. With the notation z = eie (0=6<2ir), we obtain

the relation

3 °°
dtf'(eie) = r¡ + cos 26 + — a2 cos 40 + 23 cna2n cos (2« + 2)6

2 n=2

00

> <t>(t) - 23 cna2",
n=2

where ¿ = cos 20 and 0(0 = 1 -3a2/2-W + 3a2/2. If a is sufficiently

small, </>'(/) >0 for -l=t = l and, therefore, <p(i) ̂«¿(-1) =3a2/2. It

follows that, for O^0<2ir,

9i/'(ci9) > — a2 - ¿ <*»*",
2 n-2

and the last member is clearly positive for sufficiently small values of

a.

Suppose, then, that the constant a has been chosen small enough so

that 9x/'(z) > 0 throughout D for every choice of the constant rj (rj > 1).

Let the real constant ß be chosen greater than one and sufficiently

near to one so that

(2) (y2 - a2)-1'2 > 7 for 1 < y < ß.

Since every point of C is a boundary point of D, we can find two

points in D, lying on opposite rays from the origin and as near to C

as we wish; with appropriate choice of the coordinate system, these

points lie on the real axis and have coordinates 71 and —72, with

l<7i</3. Then

/(7i) = i?7i - (7i - <* )       ,
2 2  _1/2

/(- 72) = - /(7s) = - 1J72 + (72 - a)

and therefore/(71) =/(—72) provided we choose

2 2-1/2 2 2-1/2
(yi- a)       + (72 - a )

v =-_-
7i + 72

By virtue of (2), this choice gives rj>l, and the constants a and 77

have been chosen so that/(z) has the required properties.

Case (II). Since 5 contains a nondegenerate continuum, it contains
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a bounded continuum K; and we may assume that the coordinate

system has been chosen in such a way that K contains the points

z=l and z= — 1. The complement K of K, relative to the extended

plane, is then a simply-connected domain containing D; and the

function (p(z)=z— (z2 — l)1'2 (with c/>(oo)=0) is holomorphic and

bounded in K. While the function <p(z) is not the derivative of a single-

valued function in K, its square does have this property and, there-

fore, we choose

f(z) = z + co j [<b(z)]2dz

= z + — [2z3 - 3z- 2(z2 - l)3'2],
ó

where co is a complex number yet to be determined. Since/'(z) = l

+cu[c/>(z)]2,/(z) has a positive real part throughout K (and therefore

throughout D) provided [ w| is less than a certain positive constant 5.

Since each point of K is a boundary point of D, there exists a point

con K (c2r¿\) which can be approached by sequences |z„'} and

{z„" } in D in such a way that the two expressions (z„'2— l)3'2 and

(z„"2—l)3'2 approach the two distinct values of the symbol (c2 — l)3'2.

Therefore, as « becomes large, that value of the constant « for which

the relation/(z„' ) =/(z„" ) holds approaches zero. If the index « is large

enough u can be chosen subject to the condition | co| < 8 and in such a

way that f(zñ) =f(Zn')- This completes the proof of Theorem 1.

3. Almost convex domains. In this section we establish the second

part of our main result and discuss a certain unsolved problem con-

nected with it.

Theorem 2. A domain which is almost convex has property (U).

It should be observed that Theorem 2 contains the Noshiro-

Warschawski Theorem (see §1). To prove the theorem, suppose first

that Zi and z2 are two distinct points of the domain D such that D

contains the line segment joining the two points, and let z2 = Zi+reia

(r>0). Then

/(*) - /(ai) =   f lf'(z)dz = e" frf'(zi + te^dt.
J ¡i Jo

The real part of the last integral is positive and, therefore, /(02)

If Zi and z2 are two points of D that cannot be joined by a straight
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line segment in D, let R be such that the circular discs | z —Zi| ÚR and

\z — z2\ ^R lie in D; and let ilfand p be positive constants such that

the relations |/'(s)| ¿M and 3î/'(z)èju hold throughout these two

discs. Let e be a constant subject to the condition 0<e<i? and to a

further condition specified below; and let fi and f2 be two points such

that |fi —Zi| <e and |f2 —z2| <e and such that D contains the line

segment joining them. With the notation C2 = Ci+peiß (p>0) we ob-

tain, as above, the relation

/(ai) - Azi) =   f 1f'(z)dz + e* f V'(fi + te*)dt +  f"' f'(z)dz.
J ¡i Jo J r2

The first and the last integrals have moduli less than Me each. The

real part of the second integral is greater than 2(R — e)p, hence the

same is true of its modulus. If e is chosen less than Rp/(p + M),

it follows that f(z2)7if(zi), and the theorem is proved.

We do not know of any function f(z) whose derivative has a posi-

tive real part throughout some almost convex domain D, and which

cannot be defined to be holomorphic in the interior of the convex

hull of D. In other words, we do not know whether or not there exists

a generalization of Riemann's Theorem on removable singularities

which would permit Theorem 2 to be proved as an immediate conse-

quence of the Noshiro-Warschawski Theorem. But we shall prove the

required generalization of Riemann's Theorem for a large class of

almost convex domains. In order to state our result more concisely,

we make the following definition. A point-set E in the plane has

perimeter zero provided, for every positive number e, there exists a

set of disjoint rectifiable closed Jordan curves Jk such that each

point of E is enclosed by one of the curves Jk and such that the sum

of the lengths of the curves Jk is less than e.

Theorem 3. Ifip(z) is holomorphic and bounded in a domain D whose

set of deficiency has perimeter zero, then \p(z) can be defined so as to be

holomorphic in the interior of the convex hull of D.

Let D be a domain and S its set of deficiency, of perimeter zero.

Let s be an arbitrary point of S. It follows from the definition above

that s can be enclosed by a rectifiable closed Jordan curve P, lying

entirely in D. Let T be the part of S that lies inside P. We shall show

that^(z) can be defined holomorphically on T, hence in particular at

the point s.

If € is small enough the corresponding curves Jk which enclose T

lie entirely inside P. Also, by the Heine-Borel Theorem, it may be

assumed that the set  {/*}  consists of finitely many curves. Any
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point z inside T, at a distance 8 greater than e/2 from T, lies outside

of each of the curves Jk; and, for any such point z, Cauchy's Integral

Theorem gives the relation

Jt   Ç — z k  Jjk f — z

where all integrals are to be taken in the counter-clockwise direction.

Since the sum with respect to ¿ has modulus less than Me/(8 — e/2),

where M is an upper bound for | \p(z) \ in D, and the first integral is

independent of e, the sum with respect to ¿ must be zero, and the

remaining integral defines a function which is holomorphic inside T.

Theorem 4. If the set of deficiency of the domain D has perimeter

zero and if f(z) has a derivative whose real part is positive throughout D,

then f(z) can be defined so as to be holomorphic in the interior of the

convex hull of D.

Under the hypotheses of the theorem, the function ip(z)

— [l — /'(z)]/[l+/'(z)] has modulus less than one throughout D. By

Theorem 3, the function \p(z) and therefore the function/'(z) can be

defined so as to be holomorphic in 77, the interior of the convex hull

of D. Since 77 is simply-connected, f(z) can be extended so as to be

holomorphic in 77, and the theorem is proved.

Theorem 5. If D is a domain whose set of deficiency has perimeter

zero, D is almost convex.

Let Zi and z2 be any two points in D and let L be a line perpendicular

to the line segment joining Zi and z2. Since the set of deficiency of D

has perimeter zero, its orthogonal projection upon L must be a set of

measure zero; hence the complement of the projection is everywhere

dense on L. It follows that D contains line segments perpendicular to

L and passing arbitrarily near Zi and z2. This proves the theorem.

The converse of Theorem 5 does not hold. For if the set of defi-

ciency of D is a totally disconnected linear set of positive measure,

it does not have perimeter zero although D is almost convex. A more

interesting counter-example to the converse of Theorem 5 is described

in the next section. (See §4, Case (ii).)

4. Concerning certain Cantor sets. Let b be a positive constant

less than 1/2 and let 50 denote the unit square O^x^l, O^y^l.

Let Si be the union of the four closed squares whose sides have length

b and which lie in the corners of So- When 5„_x has been defined let

Sn be the union of the 4" closed squares whose sides have length b"
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and which lie in the corners of the 4n~x squares of Sn-i- Let 5 be the

intersection So-Si-St-' • • , and let D be the complement of 5. Then

(i) if 0<Z><l/4, S is of perimeter zero, hence D is almost convex

(by Theorem 5) ;

(ii) if ¿> = l/4, D is almost convex, but 5 is not of perimeter zero;

(iii) if l/4<t<l/2, D is not almost convex and, therefore, S is

not of perimeter zero (by Theorem 5).

Case (i). It is possible to enclose Sn by 4n squares whose sides have

length ßn, where ¿></3<l/4. The combined length of the perimeters

of these squares is 4(4(3)" and, therefore, 5 is of perimeter zero.

Case (ii). We show first that D is almost convex. The direction of

any line that passes through the lower left-hand vertices of two

squares of a set Sn shall be called a preferred direction. If A is a line

perpendicular to a preferred direction, the orthogonal projection S'

of 5 upon A shall be shown to have measure zero. Since the projec-

tion S' is the intersection of the projections So, S{, S2 , ■ ■ • , it will

be sufficient to show that the measure of S„ tends to zero for a

subsequence of the sequence of integers ». For some index p, the

projections upon A of at least two squares of Sp coincide and, therefore,

mSJ = [(4>-1)/4*] • (mS¿ ). Similarly, mS'tpg [(4»-1)/4"]* (mS¿ ). It
follows that mSkP—»0 as k—>«>.

Pet Gi and G2 be two open circular discs of radius r in D and let

Ai and A2 be their centers. We shall construct a line segment in D

which connects Gi and G2. If the line segment AiA2 or some line seg-

ment parallel to it and meeting Gi and G2 lies in D, all is well. Other-

wise, let /( denote a line segment parallel to AiA2, lying at a distance

t (0<t<r) on one fixed side of AiA2, and terminating in Gi and G2;

and let q(t) be the distance between A± and the intersection of lt with

S. If q(t) were a continuous function of t, S would contain a nonde-

generate continuum, contrary to its construction. Since q(i) is

bounded and discontinuous and since the set 5 is closed, one of the

lines lt, say /*, meets 5 in two distinct points P' and P".

Now let PJ and PJ' be the lower left-hand vertices of those

squares in Sn which contain P' and P", respectively. Since PJ —*P'

and PJ' —*P" the line X„ through PJ and PJ' passes through Gx and

G2 when w is sufficiently large. Because the direction of X„ is a pre-

ferred direction, the orthogonal projection of 5 upon a perpendicular

to X„ is nowhere dense (being closed and of measure zero), and,

therefore, D contains a line segment parallel to X„ and meeting Gi and

Gi. This proves that D is almost convex.

On the other hand, the linear projection of 5 in the direction of a

line of slope 2 is identical with the projection of the unit square 50,
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since the projection of each of the sets Sn is identical with it. It fol-

lows that ¿> is not of perimeter zero.

It should be remarked that every line of slope 2 which passes

through the unit square meets 5 precisely once except for a set of

denumerably many lines that meet S in precisely two vertices of

squares of some set Sn- Also, since there are preferred directions of

slope as near to 2 as we please, the set 5 serves as an illustration of

the following fact: If m(d) is the measure of the linear projection of a

bounded point-set in the direction of a line making an angle 0 with

the x-axis, then m(6) need not be a continuous function of 0.

Case (iii). Observe that the slopes of the lines through bi and

b+(\—b)i and through b and (l—b)+i, respectively, are (l—2b)/b

and 1/(1—20). For w = l, 2, ■ ■ ■ , the linear projection of Sn in any

direction with slope s, where (1— 2b)/b = s = 1/(1 — 2b), is identical

with the corresponding projection of S0- It follows that every line of

such slope that passes through the unit square between its upper

left-hand and lower right-hand vertices meets S; hence D cannot be

almost convex.
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