
ON DERIVATIVE AND TRANSLATIONAL BASES
FOR PERIODIC FUNCTIONS1

R. E. EDWARDS

1. Introduction. It has been shown by Hartman and Wintner

[l]2 that if f(x) = 23-« F(n)einx is a regular-analytic periodic func-

tion such that F(n)¿¿0 for all w, then the functions f(x), f'(x),

f"(x)-, ■ • ■ are fundamental in the sense of uniform convergence

amongst all continuous periodic functions. As is pointed out in [l],

the assumption of regular-analyticity may be replaced by a suitable

form of quasi-analyticity. It is the object of this paper to exploit

this extension, and to consider the related problem for translational

bases.

I wish to express here my thanks to Professor J. L. B. Cooper of

University College, Cardiff, for the help and advice received from him

during the preparation of this paper. In addition, I am grateful to a

referee for pointing out two errors in the original manuscript.

2. The space of continuous periodic functions. We denote by

E the Banach space of all continuous functions with period 27r, the

norm on E being

11/11  =sup |/(x)|.
X

The «th Fourier coefficient of f(x)EE will be denoted by F(n), the

corresponding capital letter indicating passage from the function to

its Fourier coefficients.

It is well known that the topological dual E' of E is identifiable

with the set of all functions p(x) of bounded variation over — 7r^x^7r,

the duality being expressed by the bilinear functional

(/.A«) =   I    f(-x)dp(x);

we shall not distinguish between functions p(x) which give rise to

the same functional on E.

HfEE, P(f) and D(f) will denote the closed vector subspaces of E

spanned respectively by all the functions einx with « such that F(n)
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t¿0, and by the set of derivatives of all orders of/, the consideration

of D(f) being conditional on the existence of these derivatives. Like-

wise, if A is any given set of real numbers (which may be assumed

reduced modulo 2x if this is convenient), T(A,f) is the closed vector

subspace of E spanned by all the translations/¡(x) =/(x+0 of/with /

ranging over A. In case A contains, modulo 2x, all real numbers, we

write T(f) in place of T(A, f).

3. The translations of a general element of E. Since it is plain that

we have always T(A,f)Ç.P(f) and D(f)QP(f) whenever D(f) is de-
fined, the best we can hope for is that T(A, f) and/or D(f) shall ex-

haust P(f). For a general element/ of E, D(f) is not defined; and in

this case we are able to prove only that T(f) =P(f). Of course, this

last implies that 7"(^4, f)=P(f) whenever A is dense (modulo 2x):

that this is the best possible results in general is shown in [2].

Theorem 1. For any fEE, T(f)=P(f).

Proof. If pEE' is orthogonal to T(f), the function of / defined by

M(t) m (ft, M) =   ÇTf(t - x)dp(x) = f*p(t)

is zero for all /. Now M(t) has the Fourier coefficients equal to

F(n)-  |     e~inxdp(x).

These must all be zero, so that

e'inxdp(x) = 0L
whenever F(n) ¿¿0. That is, p is orthogonal to all functions einxEP(f)-

The result now follows from the Hahn-Banach theorem.

We observe that the result could also be proved by making E

into a commutative Banach algebra (without unit) by defining the

product/*g of /, gEE, to be their convolution over a period:

f*g(x) = (2X)"1  f   f(x - y)g(y)dy.
"   —T

We have then only to apply a known resolution theorem for ideals in

such algebras; see Segal [3, Theorem 2.2 and Corollary 2.2.1].

4. Functions of E with "small" Fourier coefficients. We begin by

formulating two general principles which serve to make plain the
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relevance of quasi-analyticity to the problems we are considering. For

a given /££, let E'(f) be the class of all functions of the form / * p, p.

ranging over E'. We have then

(A) In order that T(V, f)=P(f) shall hold for a given fEE and

all nonvoid open sets V, it is necessary and sufficient that the class

E'(f) be quasi-analytic (I) (see [4, p. 50]).

(B) In order that D(f)=P(f) shall hold for a given fEE, it is
necessary and sufficient that the class E'(f) be quasi-analytic (A) (see

[4, p. 130]).
Both of these principles follow from the Hahn-Banach theorem.

Consider, for example, (A). If/£7£, if Fis a nonvoid open set, and if

p-EE' is orthogonal to all the/< with tE V, we shall have/u * (t) =0

for tE V. If therefore E'(f) is quasi-analytic (I), / * p(t) =0 for all /.

This implies, as in the proof of Theorem 1, that p. is orthogonal to

all functions einxEP(f), and hence is orthogonal to P(f) itself. At this

stage, the Hahn-Banach theorem serves to show that P(f)ET(V,f).

Since the reverse relation is always satisfied, the condition is proved

to be sufficient.

If, on the other hand, E'(f) is not quasi-analytic (I), there is a

nonvoid open interval Fand pEE' such that f*p(t) is zero on V

and is yet not identically zero. If t0 is a point where this function is

not zero, the Hahn-Banach theorem shows that ft0Q.T(V, /), and

so thatP(f)(£T(V,f). This shows that the condition is necessary, and

so completes the proof of (A).

Similar reasoning establishes (B).

Before using these principles to establish specific results, it is inter-

esting to observe a relationship between D(f) and T(A, f) for suit-

able functions / and suitable sets A.

Theorem 2. If fEE has derivatives of all orders, and if the set A has

0 as a limiting point, then D(f)ET(A,f).

Proof. If we use the notation of the proof of Theorem 1, the func-

tion M(t) has derivatives of all orders,

M<»>.(0) = (/<»>, ju),

and M(t) =0 for tEA. By applying Rolle's theorem successively, we

see that Af(n)(0)=0 for w = 0, 1, 2, • • • , and the theorem follows

from the Hahn-Banach theorem.

Remark. There is a partial reverse of this assertion for more special

functions/ (as one might expect on the basis of the Taylor expansion

whenever this possesses the necessary uniformity of convergence).

For example, if / is regular-analytic (which hypothesis is equivalent
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to the assumption that F(n) =0(e~<,|n|) for some a>0), it may be

shown by use of the Hahn-Banach theorem that T(f)QD(f). How-

ever, in this case, Theorem 3 applies to show that D(f) =P(f), and

hence certainly that T(f)ED(f). Theorem 2 now goes to show that

in such cases we have T(f) =D(f) =P(f).

From principle (B) we obtain an extension of the result of Hartman

and Wintner (see [l, p. 8]), namely

Theorem 3. Suppose that p(u) (w>0) is such that u-p'(u) \ + ^ as

u—>+ oo, and that

/OO

p(u)du/u2 = + oo.

Then, if fEE is such that

|F(±«)| < e-"<n) (» = 0, 1, 2, • • • ),

wehave D(f)=P(f).

Proof. By (B), it is enough to show that the class E'(f) is quasi-

analytic (A). However, if pEE', the Fourier coefficients of f*p(i)

are those of / multiplied by the Fourier-Stieltjes coefficients of p.

These last are plainly bounded. That E'(f) is quasi-analytic (A)

therefore follows from [4, Theorem II, p. 79].

Remark. By using Theorem I, pp. 78-79, of [4], we can show that

if p(u) is as before, except that now

p(u)du/u2 < + oo,

then functions fEE exist for which D(f) 9£P(f).

By taking p(u) equal to a suitable multiple of u, it results from

Theorem 3 that D(f) =P(f) for all regular-analytic fEE: this is the

original assertion of Hartman and Wintner. Also, by Theorem 2,

T(A, f)=P(f) whenever fEE is regular-analytic and the set A has

0 as a limiting point. But this does not make full use of the regular-

analyticity of/. We have in fact the following theorem.

Theorem 4. If fEE is regular-analytic, then T(A, f) =D(f) =P(f)
provided A has at least one (finite) limit point.

Proof. On account of the remark following Theorem 2, it is enough

to show that 7"(^4, f)=P(f). However, if/ is regular-analytic, any

function of class E'(f) is the restriction to the real axis of a function

regular in some horizontal strip containing that axis. If any such
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function vanishes on a set A of real numbers having a finite limit

point, it must vanish identically. The assertion follows from this last

remark. The argument makes it plain, indeed, that any set A of real

numbers forming a determining set ( = set of uniqueness) for the

class of functions regular in this strip will serve equally well.

Strong results concerning the subspaces 7"( V,f) follow from a more

direct use of (A) (combined, of course, with deep theorems on classes

quasi-analytic (I)). In particular, we may record the following

theorem.

Theorem 5. If p(u) is as in Theorem 3, and if fEE is such that

\F(±n) | < e-"<"'

holds for all integers « > 0 with the possible exception of a sequence {w¿}

such that

23 l/»< < + co,
i

then T( V, f) =P(f) for all nonvoid open sets V.

Proof. This follows from (A) combined with the theorem given in

[4, §61, pp. 141-142].
So far, the quasi-analyticity of E'(f) has been ensured by assuming

that the Fourier coefficients of / are small at infinity. But the same

result can arise from gap-conditions on the Fourier series of /; see

[4, chaps. VII and VIII]. An extreme and simple case of this nature

is discussed in [2], where it is assumed that F(n)=0 for all «<0.

The result here is to the effect that T(A,f) =P(f) whenever the set A

has positive measure.

5. A stronger mode of convergence. I owe the substance of this

section to some remarks made by Professor J. L. B. Cooper. For defi-

niteness, assume th&t fEE satisfies the conditions of Theorem 5; we

then know that any gEP(f) is the uniform limit of finite linear

combinations of translations f(x + t) of/ with tEV. Now suppose it

known a priori that g has derivatives of all orders. In this case, we

strengthen the mode of convergence as follows. It is plain that for

any fixed ¿ = 0, 1,2, • ■ -, the function/'*' also satisfies the conditions

of Theorem 5 (the function p(u) relevant to flh) being dependent on

k, of course), and that gmEP(f)- Hence, given tk>0, we can find a

function ft, a finite linear combination of translations ft of / with

tEV, such that

ii/r - n\ = e,
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By successive integration it follows that

M"-tli>\\  áí»*"'-«* (Oá/áA).

If we choose the numbers €* so small that

lim (4x)*-e* = 0,
t->oo

it results that, for any fixed j,

lim/*' (x) = g    (x),

uniformly in x. That is, the convergence of fk to g is such that the

limiting process remains valid after any number of differentiations.

Similar remarks apply to Theorem 3.

6. Free systems of translations. We consider here a problem com-

plementary to that which precedes, namely that of determining free

systems of translations. The corresponding problem concerning deriv-

atives is not trivial for a general element of E. Nevertheless, there is

considerable similarity between the two questions, and we shall for

brevity confine our remarks to translations. In connection with

derivatives let us remark only that if (for example) fEE is regular-

analytic, then its derivatives never form a free system (see the defini-

tion made in the next paragraph) in E; in fact, the first/ derivatives

of / always belong to the closed vector subspace of E spanned by

the remaining ones. Using the Hahn-Banach theorem, this follows

from the fact that no function of class E'(f) can be a polynomial

without being identically constant. This shows, incidentally, that

for such fEE, D(f) is unaltered if in its definition we omit any finite

number of derivatives of/. Results of this type have a direct analogue

for translations in assertions of the calibre of Theorem 6 below.

In an arbitrary topological vector space E, a subset F of E is said to

be free if, whenever fEF, f does not belong to the closed vector sub-

space of E spanned by the subset F— {/}.

In turning to translations, the problem we have in mind has mean-

ing relative to any translation-invariant topological »vector space of

functions defined on an abelian topological group. In marked contrast

to the problem of fundamentality of translations in such a space,

which has received a great deal of attention, the question of free

systems of translations appears not to have been discussed at all. It

would appear, however, that the case in which the underlying group

is compact is by far the simplest: this is true of the case with which
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we are concerned in this paper, the underlying group being the factor

group of the reals modulo 2tt.

Given a function fEE (where E may have the general significance

explained in the last paragraph), we shall say that the translations of

/ are free (or, at length, that they form a free system in E) if, for

any discrete subset3 A of the underlying group, the system of trans-

lations/! of/with tEA is free in E. It need hardly be remarked that,

in dealing with the space E defined in §2, the topology in question is

the quotient modulo 2tt of the usual metric topology on the real axis.

Returning now to the special problem in hand, it is quite obvious

that a function fEE whose Fourier coefficients are too small at in-

finity cannot possibly have free translations; further, the vanishing

of too many Fourier coefficients of /can also preclude the possibility

that/has free translations. In both these cases, the reason why/fails

to have its translations free is because the class E'(f) is quasi-analytic.

The question as to how many of the Fourier coefficients of / may

vanish and yet / have its translations free remains open. Theorem 6

below is designed to show how small the Fourier coefficients of /

may be (at infinity) and yet / have a free system of translations, it

being granted that F(n) 9e 0 for all «. The conclusion of Theorem 6 is in

fact stronger than the assertion that the translations of / are free.

One further notion is required prior to the statement of Theorem

6. A sequence (4(5)} (5 = 0, 1, 2, • • • ) of positive numbers is said

to be of Carleman type if, when we define

B(s) = (A(s)y,       B(s) = inf B(t),
«äs

we have

(6.1) EV£(s)<+».

Theorem 6. Suppose that fEE and that F(«) ^0 for all n. Suppose

also that there is a sequence {A (s)} of Carleman type, and a sequence

{sn} (» = 0, 1, 2, • • • ) of non-negative integers, such that for every

X>0
oo

jZ\F(n)\-lA(sln\)(X/\n\yM < + » ;
—00

then f has free translations in E.

Proof. As mentioned above, we aim to prove a little more, namely

3 By this we mean that A(~\A' is void, that is, that the induced topology on A is

discrete. This does not, of course, mean that A can have no limit point in the group.
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that / has the following property.

(P) Given a set A, closed in the quotient topology, and a point to

not in A, the function/<„ is not in T(A,f).

We begin by converting (P) into an equivalent assertion concerning

the class E'(f):
(P') Given any neighbourhood V oí zero (in the quotient topol-

ogy), there is a function of class E'(f) which has the value 1 at zero

and is zero outside V (modulo 2x).

To verify the equivalence of (P) and (P'), note first that there is no

loss of generality involved in assuming that the arbitrarily given

point to is ¿o = 0. And, by the Hahn-Banach theorem, to require that

fE1(A, f) for any set A, closed in the quotient topology and not

containing 0, is the same as to require that a functional pEE' exists

corresponding to any given neighbourhood V of zero which is orthog-

onal to all the ft with t outside V and which is yet not orthogonal to

/ itself. Any such p, when multiplied by a suitable scalar, yields a

function f*pEE' satisfying (P').
The remainder of the proof is concerned with proving the existence

of a function of class E'(f) satisfying (P'). By [4, chap. V, §33],

there is a not-identically-zero, infinitely differentiable function q>(t)

(-w^t^w) such that

0<«>(-7r) = 4><s>(x) = 0 (s = 0, 1, 2, • • • )

and

sup | (¡>^(t) | < A(s) (s = 0, 1, 2, • • • ).
t

Suppose that t, — x <r <x, is chosen so that (¡>(t) ¿¿0. Let (j>(t) be de-

fined everywhere by periodicity. Choose X > 0 so large that ( — 2-w/X,

2if/X) C V, V being the neighbourhood of zero figuring in condition

(P') (assumed reduced modulo 2x). Put 0(t)=<p(Xt+T); then 0(0 is

infinitely differentiable, and

0(0) 5* 0,
(6.2)

d^(-a) = flW(i) = 0 (s = 0, 1, 2, ■ • • ),

where

_ a - (- x - r)/X < 0,        b - (x - t)/X > 0;

further

(6.3) sup | 00(0 | < X'-A(s) (s = 0, 1, 2, ■ ■ • ).
i

We may assume X so large that —x<—a<0<&<x. Finally, put
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(6(t)        for -a = t = b,
(6.4) 8(t) - \ W

(.0 elsewhere on — x = / ^ it,

and define 8(t) outside [ — tt, it] by periodicity. The Fourier coeffi-

cient of 8(t) are then

A(«) = (27T)-1 f   6(t)e~intdt,
J —a

whence, integrating by parts i|„| times and using (6.3), we have

(6.5) |A(«)| <K-A(slnl)-(X/\n\y^,

K being an absolute constant.

If we assume the hypothesis of the theorem, (6.5) shows that the

formulae

00

M(x) = (2tt)-123 {F(n)}-lA(n)-einx   (-r = x = t)

and

dp(x) = M(x)dx

are effective in defining a measure pEE' such that

f*p(t) = 8(t)

identically in /. By (6.2) and (6.4) it follows that the measure p is

orthogonal to ft when t is outside V (modulo 2ir) and yet is not

orthogonal to / itself. The proof is therefore complete.

Remarks.

(i) We can take, for example, A(s)=sp' where Kp<+ =o, and

sn equal to the integral part of n" for «>0 where 0<q<l/p; our con-

dition is then that

00

23|i'(«)|-1-(A7| w|)U-™>l«la < + =o       (allZ > 0).
—cc

(ii) All that is required in the above proof is that the numbers

cn= {F(n)}-i-A(sM)(X/\n\yi"i

be the Fourier-Stieltjes coefficients of a bounded measure pEE' (for

each X>0). But this itself implies that the c„ are at any rate bounded,

and, by replacing them by c„/(l-r-|»|2) (say), our hypothesis will be

satisfied. But remark (i) shows that factors of the type (l-r-|»|2)-1

are of no importance compared with the remaining terms.



1951] BASES FOR PERIODIC FUNCTIONS 653

Added in proof. The questions outlined at the beginning of §6,

namely those concerning the freedom or independence of translations,

are discussed at greater length and in more generality in a paper to

appear in the Annales de l'Institut Fourier. The restriction that

F(n) ¿¿O for all « is there removed.
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