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1. Introduction. In the following the topological aspects of the

classical theory of embedding semigroups and integral domains are

considered. §2 is a summary of the relevant topological and algebraic

concepts and theorems which are employed in the remainder of the

paper. In §3, the general theory is developed and applied to certain

special cases. §4 is devoted to the proof that a commutative semi-

group with a cancellation law is a group if it is compact. In §5

there is a discussion of metric semigroups and in §6 a more ex-

tended treatment is given for complete separable metric semigroups.

2. Algebraic and topological preliminaries. A commutative semi-

group with identity e and cancellation law will be denoted by S. In

the Cartesian product 5 X 5 let R be the relation defined by the state-

ment: (a, b)R(c, d) if and only if ad —be. The algebraic quotient struc-

ture SXS/R will be denoted by Q(S). The canonical mapping of

SXS onto Q(S) will be denoted by <p, and the set 0(5Xe) by S*. We
shall designate integral domains by I and their multiplicative semi-

groups by /*; R, IXI*/R = Q(I), 4>, and I* will have analogous

meanings.

A topological semigroup is a semigroup with a Hausdorff topology

with respect to which multiplication is continuous in both variables.

Topological groups and fields are the conventional entities. A topo-

logical integral domain is one whose additive group is topological

and in which multiplication is continuous in both variables. In the

case of a topological semigroup or integral domain, the relation R will

be called open in case, for any open set U of SXS (of IXI*), the

saturation of U, <j>~1(d>(U)), is open. We shall call 5 (/) embeddable or

weakly embeddable in Q(S) (Q(I)) if (a) Q(S) (Q(I)) is a topological

group (field) and (b) Sf (I§) in the induced topology is a topological

or continuous image of 5 (I).

A topology on a given set will be called weaker than a second

topology on the same set if every set that is open in the first topology

is also open in the second. The second topology is then said to be

stronger than the first. Thus weak embeddability of 5 or I means that

the topology induced on S* or I* is weaker than the original.
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We observe that if A is a topological space and if 0 is a mapping

of A onto B, then there exists a unique strongest topology on B with

respect to which <j> is continuous.

Theorem 1. R-equivalence classes in SXS (IXI*) are closed sets in

the product topology.

Proof. Let A be an equivalence class and assume (a, b) is in A

(the closure of 4 in SXS). Let Ua, Ub be any neighborhoods of a,

b in S. Then (Ua, Ub) is a neighborhood of (a, b) in SXS and conse-

quently (Ua, Ub) meets A. Fix (c, d) in A. If it is false that

(a, b)R(c, d), then ad^bc, and hence there are neighborhoods Ua and

Ub such that dUa and cUb do not meet. But then there is an ele-

ment («0, uh) in A and in (Ua, Ub), and thus uad = UbC. This is a con-

tradiction. The proof for integral domains is identical.

We state the following theorem without proof.

Theorem 2. If the relation R is open and if Q(S) (Q(I)) is endowed

with the strongest topology with respect to which cj> is continuous, then

the mapping <b is open, and conversely.

3. Topology of quotient structures. We shall now consider a cri-

terion for the openness of the relation R. Since for any collection of

sets in IXI* the saturation of their union is the union of their

saturations, the openness of R is clearly equivalent to the openness of

the saturations of sets of the form (Ua, Ub). In fact, it is easily seen

that openness is equivalent to the following: corresponding to any

neighborhood of zero U and equivalent pairs of points (a, b) and

(c, d) in IXI*, there exists a neighborhood of zero F such that every

point of (c+ V, d+ V) is equivalent to some point of (a+ U, b+ U).

A further simplification is possible. Because of the continuity of

multiplication, if aEI and if W is any open set in /, then the set

[x: ax GIF] is open. It follows trivially that if x is a nonzero element

of / and if (c, d) is any element of /X /*, then if a = ex and b = dx, the

conditions of the preceding criterion are satisfied, with V

= [y. xyEU]. Since any two equivalent pairs, (a, b) and (c, d), are

equivalent to a "common multiple," (ad, bd) = (be, bd), it is possible

to formulate the following criterion.

Theorem 3. The relation R is open if and only if, corresponding to

a, b, and c in I, where b¿¿0 and ct^O, and a neighborhood of zero U,

there exists a neighborhood of zero V such that every point of (ac+ V,

bc+ V) is equivalent to some point of (a+U, b+U).

For a commutative semigroup with cancellation law this criterion
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takes the form : The relation R is open if and only if, corresponding

to elements a, b, and c and neighborhoods Ua and Ub, there exist neighbor-

hoods Uac and Ubc such that every point of ( Uac, Ubi) is equivalent to

some point of (Ua, Ub).

In case I is a metric space (or one whose topology can be described

by the convergence of simple sequences) the criterion for openness of

R can be stated as follows : The relation R is open if and only if for

arbitrary null sequences an, bn and arbitrary a, b(?á0), 0(^0) one can

find null sequences dn, en with the property (a+dn, b+en)R(ca+an,

cb+bn). A similar observation applies to 5.

Theorem 4. If R is open and if Q(S) (Q(I)) is endowed with the
strongest topology with respect to which <b is continuous, then Q(S)

(Q(I)) is a topological group (field).

Proof. We prove only that addition in Q(I) is continuous. Proofs

for all other operations and cases are similar. Thus let r, s belong to

Q(I), r=(p(a, b), s=<p(c, d), r+s = t. If Utis a neighborhood of t and

if <b(x, y)=t, then one can find neighborhoods Ux, Uy such that

<f>(Ux, Utt)EUf Since <p(ad + bc, bd)=t, there are neighborhoods

Ua, Ub, Uc, Udior which<p(UaUd+UbUc, UbUd)EUt. It follows that

if we set Ur=cb(Ua, Ub), U,=<b(Uc, Ui), then Ur+U,EUt, and the

sets Ur, U, are open since <b is open. The openness of the mapping <p, the

continuity of multiplication in I, and the fact that 7 is a Hausdorff

space imply that Q(I), as topologized, is also a Hausdorff space.

(Alternately, recalling Theorem 1 and the continuity of <j>, we see that

Q(I), as topologized, is a TVspace. Since it is also a field with con-

tinuous operations, it follows that Q(I) is a Hausdorff space.)

An example of a topological integral domain that is embeddable in

a topological field, but for which the relation R is not open: Let I be

the polynomials whose coefficient field is the rational numbers with a

£-adic valuation. The valuation for a polynomial is the maximum of

the valuations of the coefficients. The quotient field has a valuation

given by quotients of valuations of polynomials. The polynomials

are not dense in the rational functions (the function 1/x is at a dis-

tance of at least one from any polynomial). Therefore, by Theorem

12, below, the relation R is not open.

Theorem 5. If S (I) is embeddable in Q(S) (Q(I)), then <b is con-
tinuous on SXS (IXI*).

Proof. Consider the case of S. The proof for I is identical. Let

x-(p(a, b) belong to Q(S). Then for a given neighborhood of x, Ui,

there are neighborhoods  U¿,  Ui  of a and b in Q(S) such that
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UL (Ui)~lEUi. (Here we have identified a and b with faa, e) and

fab, e).) Let Ua=U¿C\S*, Ub=Ub'r\S*. These are open sets in S*

and faUa, Ub) E U¡, whence <p is continuous.

Theorem 6. 7/1 is weakly embeddable in Q(I) in the strongest topol-

ogy relative to which <p is continuous and if Q(I) in some other topology

is a topological field F in which I is embedded, then I is embeddable in

Q(I) (in its original topology). A similar result holds for semigroups.

Proof. By Theorem 5, <b is continuous relative to the topology of

F, and thus the topology of Q(I) is stronger than that of F. Conse-

quently the topology induced on /' by Q(I) is at least as strong as

that induced on I* by F. The latter topology is the topology of I,

and thus the result follows, since in the former topology we have at

most a weakening.

Theorem 7. Let F be a topological field, I and I' topological integral

domains, and assume that IEI'EF, where the inclusions are algebraic

and topological. If F = Q(I), where Q(I) has been provided with the

strongest topology with respect to which the mapping <p is continuous,

then F—Q(I'), where Q(I') has been provided with the strongest topology

with respect to which <j>' (the mapping of I'XI'* on Q(I')) is continuous.

A similar result holds for semigroups and groups.

Proof. Clearly Fis the algebraic quotient structure of /'. Further-

more since I' is topologically embedded in F, <p' is continuous

(Theorem 5). We show that the topology of F is the strongest relative

to which <f>' is continuous. Otherwise, <p (which is the contraction of

<b' to IXI*) would be continuous relative to a topology definitely

stronger than the strongest with respect to which it is continuous, a

contradiction. The proof for the case of semigroups and groups is

similar.

Theorem 8. If S (I) has the property that U open implies aU open

(a¿¿O in the case of an integral domain), then the relation R is open.

Proof. By use of Theorem 3 we have only to let Uac = cUa and

Uhc = cUb(V=cU).

Theorem 9. If S (I) is algebraically a group (field) and topologically

a semigroup (integral domain), the relation R is open and the topology

can be weakened so that S (I) becomes a topological group (field).

Proof. For the case I: If a^O and if U is open, then aU is the

inverse image of the open set U under the continuous transformation

x—+a~lx, and is therefore open. By Theorem 8, the relation R is open.
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Therefore the quotient field can be given a topology that makes it a

topological field and that induces upon I a possibly weaker topology

than the original. But I is algebraically identical with its quotient

field. A similar proof holds for S.

Corollary. // in the above S is compact, then S is a topological group.

Theorem 10. If S (I) is a topological group (field), it is identical

with Q(S) (Q(I)), where the topology of the latter is the strongest relative

to which 4> is continuous.

Proof. Only the proof for I will be given. By Theorem 9, R is

open, whence Q(I) in the strongest topology relative to which cb is

continuous is a topological field in which I is weakly embedded.

Since in the original topology of I (which is Q(I)) I is actually em-

bedded, Theorem 6 shows that 2" is embedded in Q(I) in the first

topology mentioned.

Theorem 11. If I is embedded densely in a topological field F, the
relation R is open.

Proof. Let Ui be any neighborhood of zero, in I, and let Up be an

open set in F whose intersection with / is Uj. Let a, b, cEI, b^O,

c^O. Let Vf be a neighborhood of zero in F such that, for any ele-

ments V, of Vf, (l/c)vi+acv2+viv2 and (I/c)v3+bcVi+v3v^EUf- Let

Vi= VfC\I. If (x, y) is any element of (ac+ Vi, bc+ Vi) and if z is

any element of IC\((l/c)+Vp) (the intersection is not empty), then

(xz, yz) has the form ((ac+vi)((l/c)+v2), (bc+v3)((l/c)+v2))

= (a + (l/c)vi+acv2+viv2, b + (l/c)v3 + bcv2+v3v2) = (a+uu b+u2),

where «i and u2EUf- Since xz, yz, a, and bEI, «i and u2EUi.

Theorem 3 completes the proof.

Theorem 12. If I is a polynomial integral domain with a nondiscrete

coefficient field (whose topology is induced by that of I), topologically

embedded in its quotient field F =0(1) (with a topology relative to which

F is a topological field), and if the relation R is open, then I is dense in F.

Proof. Let c be a nonzero polynomial in I and let Uf be a neighbor-

hood of zero in F. Let Vf be a neighborhood of zero in F such that

whenever x is in 1+ Vf and z is in Vf then x/(c+z) is in (l/c)+ Uf-

Because of the openness of the relation and the fact that (c, c)R(l, I),

corresponding to Vi = IC\Vf, there exists a neighborhood of zero

WiE Vi such that if wi and w2EWi, there exist elements Vi and v2 of

Vi such that (c+Wi, c+w2)R(l+vi, l+z>2). Let X be a nonzero con-

stant such that X and 2\EWi. Then there exist x and yE^+Vi
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such that (c+X, c+2X)i?(x, y). Therefore (c+2X)x = (c+X)y, and

since c+X and e+2X are relatively prime (their difference is X),

there exists a polynomial A such that x = A(c+X), y = A(c+2X). In F,

k = x/(c+X). But xGl + Vi and X6IF/C Vi. Therefore AG(l/c) + UF.

Theorem 13. Let IP be the integers in their p-adic topology (p a

prime), and assume that Q(IP) is provided with the strongest topology with

respect to which (¡> is continuous. Then (a) <j> is open, (b) Q(IP) is a topo-

logical field, (c) Rp (the rationals in their p-adic topology) and Q(IP) are

identical (algebraically and topologically).

Proof. By one of the alternative formulations of the criterion of

Theorem 3, since IPXI* satisfies the first countability axiom, it suf-

fices to show that if a„, bn are null sequences in Ip and if c,f, and g are

arbitrary in Ip and cgj¿0, one can find null sequences dn, en such that

(f+dn, g+en)R(cf+an, cg+bn). This means that

en(cf + On)  - dn(cg + bn)   = fK ~ gO-n ■■  An-

Note that if r divides cf+a„ and cg+bn, then r divides fbn—gan since

fbn-gan=f(cg+bn)-g(cf+an). Let An = cf+an, Bn = cg+bn, sn = the

greatest common divisor of An and Bn. There is an integer N inde-

pendent of n such that for m>N, pn\An, pm\Bn. Thus if we set Pn

=An/s„, Qn = Bn/sn, there exist integers i?„, S„ for which RnPn — SnQn

= 1, and hnRnPn — hnSnQn = hn. Since a„, bn are null sequences, An

approaches 0 and hence A„ contains a factor p'n, with tn approaching

infinity. Let sn = k„pUn, where A„ is prime to p. Then the numbers

un are bounded and consequently hn/sn=fahn, sn) approaches 0,

since <p is continuous and A„ approaches 0.  Let ¿n = A„i?„/5n, en

= hnS„/sn. Then dn, en are integers, since h„/sn are integers; since the

Un are bounded, it follows that d„ and e„ are null sequences, and the

above computations show that they fulfill the requirements which

were assigned. Thus (¡> is open, and part (a) is proved.

(b) By Theorem 2, Q(IP) is a topological field.

(c) Since Ip is embeddable in Rp, <¡> relative to Rp is continuous by

Theorem 5. Thus the topology of Rp is comparable with and not

strictly stronger than the topology of Q(IP). Since <¡> relative to Q(IP)

is open and since IPXI* satisfies the first countability axiom, so

does Q(IP). Thus to show that the topology of Rp is the same as that

for Q(Ip) we need only show that if rn approaches r in Rp, then r„

approaches r in Q(IP). Since both Rp and Q(IP) are topological fields,

we may assume r = 0. Thus rn=(kn/mn)ptn, where the /„ approach

infinity and A„ and m„ are relatively prime, and prime to p. Then

<P(knptn, m„)=r„ and there are integers a„ and bn such that anmn
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+ bnpn = l. Thus rn=(p(anknp'', a„mn)=4>(anknpin, l-bnpn). Clearly

a„k„p'n is a null sequence, and l—b„pn approaches 1. Thus r„ ap-

proaches 0(0, 1)=0 in Q(Ip), since <p is continuous relative to the

topology of Q(Ip).

Corollary. If I is any integral domain algebraically and topo-

logically contained in Rp, Q(I) is Rp when Q(I) is provided with the

strongest topology with respect to which <p is continuous, and I is em-

beddable in Q(I).

Proof. This is a consequence of Theorem 7.

4. Compact semigroups. In this section we temporarily abandon

the conventions of notation established above.

Theorem 14. Let S be a semigroup with a two-sided cancellation law

(we do not assume commutativity or the existence of an identity). If S

is a compact Hausdorff space and if multiplication is continuous in

both variables, then S is a topological group in its given topology.1

Proof. We shall need two lemmas for the proof of the above. The

first is a mere exercise in algebra and its proof will not be given.

Lemma 1. If S is a semigroup with a two-sided cancellation law (no

commutativity or existence of identity assumed) and if there are two ele-

ments a, b in S which satisfy b = ab, then S has a unique (two-sided)

identity.

Lemma 2. If G is a group and a compact Hausdorff space and if

multiplication is continuous in both variables, then G is a topological

group, that is, x_1 is a continuous function of x.

Remarks. In Theorem 14 and in Lemma 2, compactness is to be

construed in the sense that every infinite set of 5 or of G has a limit

point (that is, S and G are countably compact). As is well known,

spaces compact in the Bourbaki-Tukey sense (Alexandroff-Urysohn:

"bicompact") and sequentially compact spaces are countably com-

pact. In what follows we shall use the notations of [5].2

Proof. Assume x(S)—>AXo. Then (x(5))_1 is a set of points having

a limit point y, and thus there is a function a(5) which is cofinal in

A and such that (x(a(5)))_1—>¿y. Continuity of multiplication now

implies that y = x¿"1. A similar argument shows that there is only one

limit point of the points (x(5))-1 and the continuity of division

follows.

1 See discussion following the proof of Theorem 14.

3 Numbers in brackets refer to the bibliography at the end of the paper.



814 B. GELBAUM, G. K. KALISCH AND J. M. H. 0LMSTED [October

Proof of the theorem. Let x be an arbitrary element of S. In

view of Lemma 1, we may assume that the elements x", re = 1, 2, • ■ -,

are distinct. Thus they have a limit point za, and there is a function

«(5) such that xB(S)-»AZo. Clearly we may assume that all w(§) are

greater than 1. Thus the points xnii)~l have a limit point zu and there

is a function a(5) cofinal in A for which xn(a(i>)_1—>A2i, whence xzi = z0,

owing to the continuity of multiplication. In this manner one con-

structs a sequence z„ such that xnz„ = Zo (the z„ will be distinct!).

There is a function ß(5) which is cofinal in A and for which znvu))~*&z'>

where z' is a limit point of the sequence z„. Hence xntf(i))z„C/3(ä))—>az0z'

= Zo, and we conclude, using Lemma 1, that S has an identity.

Since xS is again a semigroup satisfying the hypotheses of Theorem

14, it follows that xS has an identity which is easily seen to be the

identity of S. Thus x_1 exists and S is a group. An application of

Lemma 2 yields the desired result.

Note that the Hausdorff property of the space is employed only

to insure the uniqueness of limits. If we relax this restriction and

demand only that points be closed sets (7\), the theorem fails to

hold as the following example shows: Let N be the non-negative

natural numbers, clearly an additive (indeed abelian) semigroup with

a cancellation law. Topologize N by defining the neighborhoods of a

point re as follows: a neighborhood of re consists of the point « and

the complement of some finite set of integers. Thus topologized, N is

a compact Ti space which is not a Hausdorff space, and addition is

continuous in both variables.

Iwasawa has published a proof of Theorem 14 in Sügaku vol. 1

(1947), for the case of S bicompact. At the suggestion of the editors

we include a brief sketch of his proof: By Zorn's lemma there is a

minimal nonvacuous closed subset A of S such that 4SC-4. Thus

for a in A, aS = A. If x is in S, a in A, then ax is in A, axS = A =aS,

and xS = S. Dually, Sx = S, whence S is a group. The class of all

left and right translations of S is equicontinuous since multiplica-

tion is continuous on the compact space SXS and therefore uni-

formly continuous on SXS. The continuity of inversion is shown as

follows: if x is close to y, then xy~l is close to the identity and y_1

is close to x_1. According to a personal communication, J. E. L.

Peck has obtained a similar result.

5. Metric semigroups. If S is a semigroup with an invariant metric,

then S is a topological semigroup since a„—m, A„—>& imply d(anbn, ab)

^d(anbn, a„b)+d(anb, ab)=d(b„, b)+d(an, a)—>0, a„bn—*ab, where d

is the distance in S. We now introduce a norm in Q(S) as follows: if

A =faa, b) is in Q(S), we define
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1141  =       inf       (d(a', e) + d(b', e)).
(a',b')R(a,b)

Regarding this norm the following theorem holds.

Theorem 15. Let S be as above and let Q(S) be metrized by D(A, B)

= ||^45_1||. Then Q(S) is a topological group with an invariant metric

D; Q(S) is discrete if and only if S is discrete; 0 is open on SXS; 0

restricted to SXe is open and continuous at e; finally, if R is open, 0

restricted to SXe is continuous and thus S is embeddable in a topo-

logical group with an invariant metric.

Proof. 1. || -|| is a norm of Q(S): Clearly \\A\\ âO and A =£, the

identity of Q(S), implies WA]} =0. If \\A\\ =\\<p(a, b)\\ =0, there exist
sequences a„, bn of elements of 5 such that (a„, bn)R(a, b), an—>e,

bn—+e, whence, since anb = abn, b = a and A —E. We next observe that

||45||g||.4||+||5||. For let A=<b(ai, a2) and B=<p(h, b2), AB
= <b(aibi, a2b2). Given any positive e, select a{, b{, a2 , M such that

(d{, ai)R(ah a2), (b{, M)R(bu b2) and d(a{, e)+d(a¡, e)è\\A\\+t,

d(b{,e)+d(b(,e)ú\\B\\+t. Now \\äB\\ èd(a{bl, e)+d(a¿bí , e) since
(a{b{, aibi)R(aibu a2b2). But d(a(bi, e)+d(a¡bí, e)¿d(a{b{, b()

+d(b{,   e)+d(a{b{,   M)+d(b{,   e)=d(a{,   e)+d(b{,   e)+d(a(,   e)

+d(M,e)ú\\A\\+\\B
further   that   IUI =

+ 2eand \\AB\\ ú\\A\\+\\B\\ as promised. Note
= inf(0',i')A{a,i))(á(a',  e)

d>(b,a)\\=\\A-4.li now

A-'||:  |M||=||0(a,  b)
+d(b', e)) =iniib',a>)R(b,a)(d(b', e)+d(a', e)) =|

we define D(A, B) =||^4J3-1||, we see that D is an invariant metric of

Q(S) ; the continuity of multiplication and division is a consequence

of the invariance of the metric.

2. 0 restricted to SXe is continuous at the identity: if A =0(a, e),

D(A, E) = \\A\\ =inila\b')Ria,e)(d(a', e)+d(b', e))-=d(a, e). Therefore,

a„—»e implies that An—*E.

3. 0 is open. Let .4„=0(an, b„)-*<b(a, b)=A. We wish to prove

that there exist sequences a„', &„' of elements of S such that

(a/, b/)R(a„, bn) and (ai,bi)-+(a, b). Now ini(a>,b-)inanb,abn)(d(a', e)

+d(b', e))—>0 implies that there exist sequences a'n', b'„' oí elements of 5

such that d(a'n', e)—M), d(b'n', e)—K), (a'n, b'n)R(anb, abn) or a'„'abn

= anbb'n'; if we let ai =a'n'a, bi =b'„'b, our assertion is proved.

4. 0 restricted to SXe is open. Let ^4„=0(a„, e)—>0(a, e)

—A; to show that an—>a. We see that ||^4„^4_1|| =||0(an, a)\\

= inf(a',b')R{an.a)(d(a', e)+d(b', e))—>0. Hence, as above, there exist se-

quences ai, bi oí elements of S such that ai —*e, bi —>e, a„' a = anbi.

Finally d(an, a)=d(anbi, abi)=d(aia, abi)=d(ai, bi)^d(ai, e)

+d(e, bi)—*0, and our assertion is proved. The fact that Q(S) is

discrete if and only if S is discrete is a consequence of 2 and 4.
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5. Let now R be open; we wish to show that <p contracted to SXe

is continuous, or that a„—>a implies that An=faan, e)-^>A=faa, e).

But D(A„, A)=\\A„A~1\\=iniia',b')R^„,a)(d(a', e)+d(b', e)). Since

(o„, a)-+(a, a) and (a, a)R(e, e), we have the existence of sequences

on', bn of elements of S such that (a„', bñ)R(an, a), (o„', bñ)—>(e, e)

because R is open and SXS and Q(S) are metric (see paragraph

immediately preceding Theorem 4). This last relation shows that

D(An, A)=in{ia',y)B^,a)(d(a', e)+d(b', e))gd(an', e)+d(bn", e)-+0

as promised.

Theorem 16. Let S be a metric topological semigroup such that R is

open. Then the property

(1) anbn —*b, an—*e implies bn —*b

is a necessary and sufficient condition for embeddability.

Proof. The necessity is obvious. The sufficiency is proved as fol-

lows. In the strongest topology on Q(S) relative to which <j> is con-

tinuous, (b is an open continuous mapping by Theorem 2. <f> contracted

to SXe is continuous. Let now yn—>y, where y„ and y are in Sf,

yn=(p(xn, e) and y=fax, e). Since <f> is open there exist sequences

bn, c„ of elements of S such that yn—<P(bn, cn), (bn, cn)—*(x, e); hence

(bn, Cn)R(xn, e) or 0„ = cnxn where c„—>e, 6„—»x, hence, by (1), xn—>x; <p

contracted to SXe is open, whence our assertion.

Note that since an invariant metric implies (1), the last part ol

Theorem 15 is a consequence of the preceding theorem. We also note

the following consequences of the foregoing: if S as described in our

theorem is (algebraically) a group, it is a topological group. For

future reference we observe that the following is a necessary and

sufficient condition for embeddability which is a stronger necessary

condition than (1): if a„Z>„-^c, and an—*a, then A„ converges.

6. Complete separable metric semigroups. Except when the con-

trary is indicated all semigroups S mentioned hereinafter are com-

plete separable metric topological semigroups with the additional

property :

(2) If U is an open subset of S, then so is a U for all a in S (cf.

Theorem 8).

Lemma 3. Let {U} be a basis of neighborhoods of e. Then {aU} is a

basis of neighborhoods of a. Iff is a homomorphism of S onto S' =f(S)

which is continuous at e, then it is continuous.

Proof. This lemma uses only property (2) and the continuity of ab

in each variable. 1. Since a U is open and since every open set contain-
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ing a contains some aU (by one-sided continuity of ab), the first

assertion is clear. 2. Let now U' be a neighborhood of e'=f(e). There

exists a neighborhood V oí e such that /( V) = V is contained in U'.

Consider now a' in S' and a'U'; since V is in U', a'V' = (aV)' is in

a'U' which proves the second assertion.

Note. If 5 is any topological semigroup and { U} a basis of neigh-

borhoods of e, then if we retopologize 5 by letting {aU} be a basis

at a, we get a stronger topology of 5 with respect to which 5 is still

a topological semigroup. For, by continuity of multiplication, every

open set containing a contains some aU, and for each au in aU

there exists Ui such that auUi is in aU: for u in U there exists Ui

such that uUi is in Uand, therefore, auUi is in aU. The new topology

of 5 has at least as strong separation properties (To, T\, T2) as the

old one, and, of course, satisfies condition (2) above. Now a semi-

group with property (2) automatically has one-sided continuity of

multiplication: a(bU) is in (ab)U; and the simultaneous continuity

of multiplication in 5 in the stronger topology is a consequence of the

same property at e in the original topology: given U there exists Ui

such that U\ is in U; hence aUibUi = abU2 is in abU.

Lemma 4. If C,- is a subset of S of the ith category (t = 1, 2), then so

is adfor all a in S; and conversely, if aC is of the ith category, then so

is C.

Proof. 1. Let the subset N of 5 be nowhere dense in S; we prove

that aN is nowhere dense in S. We first observe that S and aS are

homeomorphic, because S—*aS is open by hypothesis, continuous

by one-sided continuity of multiplication, and 1-1 by the cancella-

tion law. (Note, incidentally, that the homeomorphism of S and aS,

although implied by condition (2), is weaker than (2), as is shown

by the example of the additive semigroup of the nonnegative reals

with the usual topology.) We observe that if (aX)cc denotes the rela-

tive closure of aX in aS, then (aX)C0 — aXc (where the single super-

script c denotes the closure in S) : (aX)"= (aX)c(~\aS since y in (aX)"

is equivalent to y's being in (aX)e and in aS. Now, (aX)cr\aS = aXc.

We know by continuity of multiplication that aXc is a subset of

(aX)c; hence aXcr\aS = aXc is in (aXyCsaS. Let now z=ay be in

(aX)°r\aS. Since ay£7 is open, where U is a neighborhood of e,

ayUC\aX is not empty; therefore, yUC\X is not empty, since {yU}

is a basis of neighborhoods of y by the first part of Lemma 3. We can

conclude that y is in Xe, z = ay is in aXe and, therefore, (aX)ci~\aS

is a subset of aXc, (aX)cc = (aXyf^aS = aX'. Finally, in order to

prove that aN is nowhere dense, assume, on the contrary, that there



818 B. GELBAUM, G. K. KALISCH AND J. M. H. 0LMSTED [October

exists an open set G such that G is dense in (aN)e. Then GC\aS is

not empty since g in G implies that g is in (aN)c; therefore, GC\aN

is not empty, and Gf~\aS is not empty. Now Gi^aS is a subset of

(aN)ci^aS = aNc. But since N is nowhere dense in S, aN is nowhere

dense in aS (by 1 above); hence (aN)cc contains no set open in aS;

but (aN)cc = aNc and GP\aS is open in aS, a contradiction. We now

can conclude that aCi is of the first category in S if Ci is of the first

category in S.

2. Let aN be nowhere dense in S; we wish to prove that N is

nowhere dense in S. Assume, on the contrary, that there exists an

open set G in Nc; then the open set aG is in aNc which in turn is

contained in (aN)c and aN is not nowhere dense, a contradiction.

Again we can conclude that if aC is of the first category in S, so is C.

3. The statements concerning C2, aC2, and the converse follow.

Lemma 5. Let the semigroup S have the property

(3) if a„bn —» e, bn —» e, then an —> e.

Then, if xnyn-*y and yn-^y, xn—*e.

Proof. Since y U is open for open U, xny„ and y„ are in yU for

sufficiently large re; therefore, x„yn = yen, yn=yeñ where en—»e, e~-^e;

hence x„yn = x„ye„' =yen, xne„' =e„ and x„—»e by (3), as desired.

Theorem 17. Let Si be a semigroup with property (3), and S2 another

semigroup. Then every continuous isomorphism of Si onto S2 is open.

Proof. By Lemma 3 it is sufficient to prove that the mapping /

of Si onto S2 is open at the identity. Let then /(xn) =yn—*e%=f(ei).

We wish to prove that x„—*ei. Let e, be a sequence of positive real

numbers such that e<—*0. Since Si is separable it may be covered by

countably many ti-spheres. Their images cover S2 which, since it is

complete, is of the second category. Therefore, one of these ei-spheres,

say Ti, is such that/(Ti) is of the second category. Since 7\ is a Borel

set, f(Ti) is a Suslin set, and, therefore, a Baire set (see [3, p. 249]).

Thus there exists a nonempty open set Li in S2 such that LiC\Cf(Ti)

is of the first category where C denotes the complement; and there

exists a nonempty open set Lu in Li such that f(Ti) is of the second

category at each point of Lu, while Lui\Cf(Ti) is of the first category.

Consider now any y in Lu. Owing to the continuity of multiplication

in S2, there exist open sets L12, L13 such that y is in L12 which in turn

is a subset of Lu, e2 is in L13, and Li2Li3 is a subset of Lu. Since

yn—>e2, there exists a natural number rex such that, for »ê«i, yn is

in L13, or y„Li2 is a subset of Lu. Note that/(T\) is of the second cate-
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gory at each point of Li2 and that Li2C\Cf(Ti) is of the first category.

Consider now Z/i»=yn(Li2A/(iHi)) which is of the second category by

our above arguments and by Lemma 4. The equation

im = (Lln r\ f(Ti)) U (Lm H Cf(Ti))

shows that Linr\f(Ti) is of the second category, hence not empty, be-

cause Lin is a subset of ynLi2 which in turn is a subset of Lu, and

LiiC\Cf(Ti) and hence Lin(~\Cf(Ti) are of the first category. Select

now yi,n in Linr\f(Ti). yi,„ is in/(7\) or yi,n=/(xi,„) for some xi,n in

7\; but yi,n is also in Lin which is a subset of ynf(T{), or yi,n=yn/(x2,„)

for some x2,n in 7\, Xi,„ = x„x2,„ for n — ni.

Assume now that we have a sequence of open spheres in Si: Ti

D^D • • • D Tm, Ti of radius less than or equal to e¿, such that

f(Ti) is of the second category; a sequence of natural numbers 0<«i

<n2< ■ ■ ■ <nm; sequences x2,*, Xi,i=xtx2,i for ni^k<nm where, if

ni = k<ni+i, x2,k and xi,k are in 7\. Assume further that for k^nm,

there exist sequences x2>i, x'lJt = xkx'2¡t such that x'2¿ and x'hk are in

Tm. We now cover Tm by a countable number of open spheres of radii

less than or equal em+i each of which is contained in Tm. Since f(Tm)

is of the second category, one of these spheres, say Tm+\, will have an

image f(Tm+i) oí the second category. Just as in the first part of the

proof, we conclude that there exists a nonempty open set Lm+i,i

contained in S2 such that /( Tm+i) is of the second category at each

point of Lm+i,i while Lm+i,iC\Cf(Tm+i) is of the first category; that

there exists a natural number nm+i>nm and a nonempty open set

Lm+1,2 contained in Lm+i,i such that, for n = nm+i, ynLm+it2 is contained

in Lm+i,i| and finally that, for n = nm+i, there exist sequences x2i„, x'1¡n

= x„x2,„ such that x'2tn and x'lA are in Tm+X.

We now define x2,* and Xi,k = xkX2,k for nm^k<nm+i to be equal to

x2,t and x[,k respectively. This completes our induction. If we set

x2,k = ei for 0<&<wi, and Xi,k = xkX2,k, we have defined sequences

ni, x2,„, Xi,n = x„x2,„ for all n, such that 0<«i< • • • and, if n^n

<niri, x2,n and Xi,„ are in Ti and, therefore, are Cauchy sequences.

Owing to the completeness of Si there exists x2 such that x2,n—>x2

and also Xi,n—»x2, since these two Cauchy sequences are concurrent.

Our hypotheses and Lemma 5 now imply that xn-^ei since we have

x„x2,n—*x2, x2,n—+x2. This concludes our proof.

Note that if Si has the property

(4) there exists a neighborhood of the identity all of whose elements

have inverses, and division where possible is continuous,

then condition (3) is satisfied. Note also that if the metric of Si is

invariant, (3) is true. (The invariance of the metric of Si would ma-
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terially simplify the proof of the above theorem.)

The theorem just proved is a generalization of a theorem of

Banach, cf. [l, Theorem 8; 4, Theorem 13].

It is clear that the foregoing theorem will be of use in resolving

questions of embeddability of semigroups satisfying the hypotheses

for Si if the following are satisfied:

Q(S) is complete (that it is metric is clear) ; S' is closed in Q(S) ;

ASf is open in Sf for all 4 in Sf. This last condition implies that if

U* is open in S*, then so is A U* for all A in Sf, for U* = Sfi\ U for some

open subset U of Q(Si), and 4 U*=A(S*C\U) =AS*r\AU which is
open since Q(Si) is a group (see Theorem 2).

Lemma 6. S# is closed in Q(S) if and only if bS is closed in S for all
b in S.

Proof. We note that bS is closed if and only if an—>a, b\an imply

b\a (where x|y means that there exists z such that y = zx)—in other

words that the relation | is topological in character. We first note

that b\a is equivalent to a's belonging to bS. Let now bS be closed,

an—>a, b | an, that is, an in bS. Then a is in bS and b \ a. Let finally

an—*a, b\an imply that b\a and consider bS. Let a„—>a where an is in

bS; we wish to show that a is also in bS. But an in bS means that

b\an; hence b\a, a is in bS as desired. Let now bS be closed; we wish

to show that Sf is closed, that is, if An = faan, e)-+A =0(o, b), then A

is in S*, that is, b\a. But faan, e)-*faa, b) implies the existence of

on', bn such that aj-^a, bñ—>b, a» =an&» ; ¿>» =ben (where en—>e),

a„' =anben, or b\a'n; hence b\a and S* is closed. Lastly, let Sf be

closed. We wish to prove that b\an, an-+a imply b\a which, by the

first part of the present proof, is equivalent to showing that bS is

closed. But b\an means that there exists a„' such that an = añb.

Thus we have faan, b)-^p(a, b); but faan, b)=faan, e); therefore,

faa, b) is in S' as desired.
Note that the fact that bS is closed for o in S implies that bF is

closed for all closed subsets F of S and all bin S: &/„—>x implies that

b | x or that x is in bS, or that x = bs ; hence we have bfn—*bs or bfn = bsen

(where en—>e), fn = sen—>s in F, x = bs in bS, bF is closed.

Lemma 7. Condition (4) implies that bS is closed for all b in S.

Proof. Observe that b \ a„, a„—>a imply that an = a/ b for some «„',

and an — aen for en—»e; therefore, ae„ = añb, for re sufficiently large,

a = a¿beñ1 and b\a.

We mention two further conditions insuring that bS be closed for

all b in S: (1) bS is closed if and only if bsn—*x implies that there
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exists s such that sn—>s; (2) if the metric of S is invariant, or (which

is implied by it) if the mapping bS-^S is uniformly continuous, then

bS is closed for all b in S.

Lemma 8. Condition (4) implies that AS* is open in S* for all A in S'.

Proof. Note first of all that by an earlier remark this implies

that if U* is open in Sf and if A is an element of S', then A U* is

open in S'. Let An = faan, e)—*AoBo = <b(aobo, e). We wish to prove

that 4n = ^4o^4n for An' in Sf and for re large enough. Our hypothesis

implies the existence of a„', Z>„' such that añ —*aobo, bñ —>e, an = anbñ ;

but (bn)-1 exists for « large enough; hence añ(bñ)~1 = an and añ

= aoboen (where e„—>e) or aoboen(bn)~l = an = aoai,n, where ai,„

= boen(bñ)~l, An=4>(an, e)=faa0 am, e)=A0Añ where Añ =faai,n, e),

as desired. A similar proof shows that (4) also implies that Sf is open

in 0(5).
These lemmas establish the truth of the following corollary to

Theorem 17:

Corollary. If S is a locally compact semigroup satisfying condition

(4), then S is embeddable in a locally compact group.

Proof. We note that Q(S) is the continuous open image of the

locally compact separable metric semigroup SXS; hence it itself

is locally compact and separable metric; it is complete because it is a

topological group which is locally compact.

The hypotheses of the preceding corollary are not strong enough to

make S a group; a counterexample is the multiplicative semigroup of

the nonzero £-adic integers; nor does condition (4) imply condition

(2)—witness the multiplicative semigroup of £-adic numbers of

absolute value greater than or equal to 2, together with 1 (which is

then an isolated point).
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