ON THE EMBEDDING OF TOPOLOGICAL SEMIGROUPS
AND INTEGRAL DOMAINS

B. GELBAUM, G. K. KALISCH, AND J. M. H. OLMSTED

1. Introduction. In the following the topological aspects of the
classical theory of embedding semigroups and integral domains are
considered. §2 is a summary of the relevant topological and algebraic
concepts and theorems which are employed in the remainder of the
paper. In §3, the general theory is developed and applied to certain
special cases. §4 is devoted to the proof that a commutative semi-
group with a cancellation law is a group if it is compact. In §5
there is a discussion of metric semigroups and in §6 a more ex-
tended treatment is given for complete separable metric semigroups.

2. Algebraic and topological preliminaries. A commutative semi-
group with identity e and cancellation law will be denoted by S. In
the Cartesian product SX.S let R be the relation defined by the state-
ment: (a, b)R(c, d) if and only if ad =bc. The algebraic quotient struc-
ture SX.S/R will be denoted by Q(S). The canonical mapping of
SXS onto Q(S) will be denoted by ¢, and the set ¢(SXe) by Sf. We
shall designate integral domains by I and their multiplicative semi-
groups by I*; R, IXI*/R=Q(I), ¢, and I will have analogous
meanings.

A topological semigroup is a semigroup with a Hausdorff topology
with respect to which multiplication is continuous in both variables.
Topological groups and fields are the conventional entities. A topo-
logical integral domain is one whose additive group is topological
and in which multiplication is continuous in both variables. In the
case of a topological semigroup or integral domain, the relation R will
be called open in case, for any open set U of SXS (of IXI*), the
saturation of U, ¢~ (¢(U)), is open. We shall call S (I) embeddable or
weakly embeddable in Q(S) (Q(I)) if (a) Q(S) (Q(I)) is a topological
group (field) and (b) S* (I*) in the induced topology is a topological
or continuous image of S (I). "

A topology on a given set will be called weaker than a second
topology on the same set if every set that is open in the first topology
is also open in the second. The second topology is then said to be
stronger than the first. Thus weak embeddability of S or I means that
the topology induced on S* or I* is weaker than the original.
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We observe that if 4 is a topological space and if ¢ is a mapping
of 4 onto B, then there exists a unique strongest topology on B with
respect to which ¢ is continuous.

THEOREM 1. R-equivalence classes in SX.S (I XI*) are closed sets in
the product topology.

Proor. Let 4 be an equivalence class and assume (a, b) is in 4
(the closure of 4 in SXS). Let U,, U, be any neighborhoods of a,
bin S. Then (U,, Us) is a neighborhood of (a, b) in SX.S and conse-
quently (Us, U,) meets A. Fix (¢, d) in A. If it is false that
(a, B)R(c, d), then ad #bc, and hence there are neighborhoods U, and
Uy such that dU, and cU, do not meet. But then there is an ele-
ment (#,, %) in 4 and in (U,, Us), and thus #.d =usc. This is a con-
tradiction. The proof for integral domains is identical.

We state the following theorem without proof.

THEOREM 2. If the relation R is open and if Q(S) (Q(I)) is endowed
with the strongest topology with respect to which ¢ is continuous, then
the mapping @ is open, and conversely.

3. Topology of quotient structures. We shall now consider a cri-
terion for the openness of the relation R. Since for any collection of
sets in IXI* the saturation of their union is the union of their
saturations, the openness of R is clearly equivalent to the openness of
the saturations of sets of the form (U,, U,). In fact, it is easily seen
that openness is equivalent to the following: corresponding to any
neighborhood of zero U and equivalent pairs of points (a, &) and
(¢, d) in I X I*, there exists a neighborhood of zero V such that every
point of (¢c+ V, d+ V) is equivalent to some point of (a4 U, b+ U).
A further simplification is possible. Because of the continuity of
multiplication, if ¢ &I and if W is any open set in I, then the set
[x: ax€ W] is open. It follows trivially that if x is a nonzero element
of I and if (¢, d) is any element of I X I*, then if a =cx and b=dx, the
conditions of the preceding criterion are satisfied, with V
= [y: xyE U]. Since any two equivalent pairs, (e, b) and (¢, d), are
equivalent to a “common multiple,” (ad, bd) = (bc, bd), it is possible
to formulate the following criterion.

THEOREM 3. The relation R is open if and only if, corresponding to
a, b, and ¢ in I, where b#0 and c#0, and a neighborhood of zero U,
there exists a neighborhood of zero V such that every point of (ac+V,
be+ V) s equivalent to some point of (a+ U, b+ U).

For a commutative semigroup with cancellation law this criterion
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takes the form: The relation R is open if and only if, corresponding
to elements a, b, and c and netghborhoods U, and Uy, there exist neighbor-
hoods U,, and Uy, such that every point of (Us., Use) is equivalent to
some point of (U,, Us).

In case I is a metric space (or one whose topology can be described
by the convergence of simple sequences) the criterion for openness of
R can be stated as follows: The relation R is open if and only if for
arbitrary null sequences a., b, and arbitrary a, b(#0), c¢(540) one can

find null sequences d., e, with the property (a+d., b+e,)R(ca+an,
cb+b,). A similar observation applies to S.

THEOREM 4. If R is open and if Q(S) (Q(I)) is endowed with the
strongest topology with respect to which ¢ is continuous, then Q(S)

QD)) s a topological group (field).

Proor. We prove only that addition in Q(I) is continuous. Proofs
for all other operations and cases are similar. Thus let 7, s belong to
Q(I), r=¢(a, b), s=¢(c, d), r+s=t. If Uis a neighborhood of ¢ and
if ¢(x, y)=t, then one can find neighborhoods U,, U, such that
¢(U,, U,)CU. Since ¢(ad+bc, bd)=t, there are neighborhoods
Us, Us, U,y Ugfor which ¢(UUa+ UpU,, UpyUg) CU,. 1t follows that
if we set U,=¢(U,, Us), U,=¢(U,, Ua), then U,+ U,CU,, and the
sets U;, U, are open since ¢ is open. The openness of the mapping ¢, the
continuity of multiplication in I, and the fact that I is a Hausdorff
space imply that Q(I), as topologized, is also a Hausdorff space.
(Alternately, recalling Theorem 1 and the continuity of ¢, we see that
Q(I), as topologized, is a Ty-space. Since it is also a field with con-
tinuous operations, it follows that Q(I) is a Hausdorff space.)

An example of a topological integral domain that is embeddable in
a topological field, but for which the relation R is not open: Let I be
the polynomials whose coefficient field is the rational numbers with a
p-adic valuation. The valuation for a polynomial is the maximum of
the valuations of the coefficients. The quotient field has a valuation
given by quotients of valuations of polynomials. The polynomials
are not dense in the rational functions (the function 1/x is at a dis-
tance of at least one from any polynomial). Therefore, by Theorem
12, below, the relation R is not open.

THEOREM 5. If S (I) is embeddable in Q(S) (Q(I)), then ¢ is con-
tinuous on SXS (I XI*).

Proor. Consider the case of S. The proof for I is identical. Let
x=¢(a, b) belong to Q(S). Then for a given neighborhood of x, U/,
there are neighborhoods UJ, UJ of a and b in Q(S) such that
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Ud (UY)"'CU/. (Here we have identified a and b with ¢(a, ¢) and
&b, €).) Let U,=UJNS*, U,=U/NS*. These are open sets in St
and ¢(U,, Uy,) CU,., whence ¢ is continuous.

THEOREM 6. If I is weakly embeddable in Q(I) in the strongest topol-
ogy relative to which ¢ s continuous and if Q(I) in some other topology
is a topological field F in which I 1s embedded, then I is embeddable in
QUI) (in its original topology). A similar result holds for semigroups.

Proor. By Theorem 3, ¢ is continuous relative to the topology of
F, and thus the topology of Q(I) is stronger than that of F. Conse-
quently the topology induced on I by Q(I) is at least as strong as
that induced on I by F. The latter topology is the topology of I,
and thus the result follows, since in the former topology we have at
most a weakening.

THEOREM 7. Let F be a topological field, I and I’ topological integral
domains, and assume that I CI’' CF, where the inclusions are algebraic
and topological. If F=Q(I), where Q(I) has been provided with the
strongest topology with respect to which the mapping ¢ is continuous,
then F=Q(I'), where Q(I') has been provided with the strongest topology
with respect to which ¢’ (the mapping of I' XI'* on Q(I')) is continuous.
A similar result holds for semigroups and groups.

Proor. Clearly Fis the algebraic quotient structure of I’. Further-
more since I’ is topologically embedded in F, ¢’ is continuous
(Theorem 5). We show that the topology of Fis the strongest relative
to which ¢’ is continuous. Otherwise, ¢ (which is the contraction of
¢’ to IXI*) would be continuous relative to a topology definitely
stronger than the strongest with respect to which it is continuous, a
contradiction. The proof for the case of semigroups and groups is
similar.

THEOREM 8. If S (I) has the property that U open implies aU open
(a0 in the case of an integral domain), then the relation R is open.

Proor. By use of Theorem 3 we have only to let U,.=cU, and
ch=CUb (V=CU).

THEOREM 9. If S (I) s algebraically a group (field) and topologically
a semigroup (integral domain), the relation R is open and the topology
can be weakened so that S (I) becomes a topological group (field).

ProoF. For the case I: If a0 and if U is open, then aU is the
inverse image of the open set U under the continuous transformation
x—a~x, and is therefore open. By Theorem 8, the relation R is open.
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Therefore the quotient field can be given a topology that makes it a
topological field and that induces upon I a possibly weaker topology
than the original. But I is algebraically identical with its quotient
field. A similar proof holds for S.

COROLLARY. If i1 the above S is compact, then S is a topological group.

TaEOREM 10. If S (I) is a topological group (field), it is identical
with Q(S) (Q(I)), where the topology of the latter is the strongest relative
to which ¢ is continuous.

Proor. Only the proof for I will be given. By Theorem 9, R is
open, whence Q(I) in the strongest topology relative to which ¢ is
continuous is a topological field in which I is weakly embedded.
Since in the original topology of I (which is Q(I)) I is actually em-
bedded, Theorem 6 shows that I is embedded in Q(I) in the first
topology mentioned.

THEOREM 11. If I is embedded densely in a topological field F, the
relation R 1is open.

Proor. Let Ur be any neighborhood of zero, in I, and let Ur be an
open set in F whose intersection with I is Us. Let @, b, cE1, b0,
¢#0. Let Vr be a neighborhood of zero in F such that, for any ele-
ments v; of Vg, (1/¢)n1+acvy+vwe: and (1/¢)vs+bcvs+v0,E Up. Let
Vi=VeNI. If (x, y) is any element of (ac+ Vi, bc+ Vi) and if z is
any element of IN((1/¢)+ Vr) (the intersection is not empty), then
(xz, yz) has the form ((ac+v)((1/c)+vs), (bec+vs)((1/c)+1v2))
=(a+(1/c)n+acve+vwe, b+ (1/c)vs+beve+vawy) = (a+u1, b+uy),
where #; and #.& Up. Since xz, vz, @, and bEI, u, and uze Us.
Theorem 3 completes the proof.

THEOREM 12. If I is a polynomial integral domain with a nondiscrete
coefficient field (whose topology is induced by that of I), topologically
embedded in its quotient field F=Q(I) (with a topology relative to which
Fisa topological field), and if the relation R is open, then I is dense in F.

ProoF. Let ¢ be a nonzero polynomial in I and let Ur be a neighbor-
hood of zero in F. Let Vr be a neighborhood of zero in F such that
whenever x is in 1+ Vp and zis in Vp then x/(c+2) isin (1/¢)+ Ur.
Because of the openness of the relation and the fact that (¢, ¢)R(1, 1),
corresponding to V;=INVp, there exists a neighborhood of zero
Wi C Vi such that if w, and w.& Wi, there exist elements v; and v, of
Vi such that (c+w, c+w2)R(1491, 149;). Let X be a nonzero con-
stant such that N and 2\EW;. Then there exist x and y&E1+4 Vr
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such that (¢c+\, ¢c+2\)R(x, y). Therefore (c+2N)x=(c+N)y, and
since ¢+\ and c+42\ are relatively prime (their difference is M),
there exists a polynomial k such that x=k(c+\), y=k(c+2N). In F,
k=x/(c+N). ButxE1+ Viand N\E W;C V1. Therefore k€ (1/¢c)+ Ur.

THEOREM 13. Let I, be the integers in their p-adic topology (p a
prime), and assume that Q(I,) is provided with the strongest topology with
respect to which ¢ is continuous. Then (a) ¢ is open, (b) Q(I,) s a topo-
logical field, (c) R, (the rationals in their p-adic topology) and Q(I,) are
identical (algebraically and topologically).

ProoF. By one of the alternative formulations of the criterion of
Theorem 3, since I, X I satisfies the first countability axiom, it suf-
fices to show that if a,, b, are null sequences in I, and if ¢, f, and g are
arbitrary in I, and ¢g0, one can find null sequences d,, ¢, such that
(f+dn, g+en)R(cf+an, cg+b,). This means that

en(cf + an) — dulcg + b,) = fbn — gan = ha.
Note that if r divides ¢f+a, and cg+b., then r divides fb, —ga. since
fon—gan=f(cg+b,)—g(cf+a.). Let Ap=cf+an, Ba=cg+ba, s.=the
greatest common divisor of 4, and B,. There is an integer N inde-
pendent of n such that for m> N, p™|A,, p™|B,.. Thus if we set P,
=A,/sn, Qn=B./s., there exist integers R,, S, for which R,P,—S.0Qx
=1, and k.R.P.—1.S,.Q,=h, Since a,, b, are null sequences, k,
approaches 0 and hence k., contains a factor p*», with ¢, approaching
infinity. Let s,=k.p*», where k, is prime to p. Then the numbers
u, are bounded and consequently k./s,=¢(k., s.) approaches O,
since ¢ is continuous and k, approaches 0. Let dn=Fh.R./ss, e€x
=h,S,/s.. Then d,, e, are integers, since k./s, are integers; since the
u, are bounded, it follows that d, and e, are null sequences, and the
above computations show that they fulfill the requirements which
were assigned. Thus ¢ is open, and part (a) is proved.

(b) By Theorem 2, Q(I,) is a topological field.

(c) Since I, is embeddable in R,, ¢ relative to R, is continuous by
Theorem 5. Thus the topology of R, is comparable with and not
strictly stronger than the topology of Q(I,). Since ¢ relative to Q(I,)
is open and since I,XI; satisfies the first countability axiom, so
does Q(I,). Thus to show that the topology of R, is the same as that
for Q(I,) we need only show that if r, approaches 7 in R, then 7,
approaches 7 in Q(I,). Since both R, and Q(I,) are topological fields,
we may assume r=0. Thus 7,=(k./m.)p‘», where the ¢, approach
infinity and k, and m, are relatively prime, and prime to p. Then
¢(kaptr, m,) =r, and there are integers a, and b, such that a.m,
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+b.p*=1. Thus r,=¢(ankap'*, anma.) =¢(a.kap'», 1—0,p"). Clearly
a.k.pt» is a null sequence, and 1—b.p" approaches 1. Thus 7, ap-
proaches ¢(0, 1)=0 in Q(I,), since ¢ is continuous relative to the
topology of Q(I,).

CoRroLLARY. If I is any integral domain algebraically and topo-
logically contained in R,, Q(I) is R, when Q(I) is provided with the
strongest topology with respect to which ¢ is continuous, and I is em-
beddable in Q(I).

Proor. This is a consequence of Theorem 7.

4. Compact semigroups. In this section we temporarily abandon
the conventions of notation established above.

THEOREM 14. Let S be a semigroup with a two-sided cancellation law
(we do not assume commutativity or the existence of an identity). If S
is a compact Hausdorff space and if multiplication is continuous in
both variables, then S is a topological group in its given topology.!

Proor. We shall need two lemmas for the proof of the above. The
first is a mere exercise in algebra and its proof will not be given.

LemMA 1. If S is a semigroup with a two-sided cancellation law (no
commutativity or existence of identity assumed) and if there are two ele-
ments a, b in S which satisfy b=ab, then S has a unique (two-sided)
identity.

LemMmA 2. If G is a group and a compact Hausdorff space and if
multiplication is continuous in both variables, then G is a topological
group, that is, x~! is a continuous function of x.

REMARKS. In Theorem 14 and in Lemma 2, compactness is to be
construed in the sense that every infinite set of S or of G has a limit
point (that is, S and G are countably compact). As is well known,
spaces compact in the Bourbaki-Tukey sense (Alexandroff-Urysohn:
“bicompact”) and sequentially compact spaces are countably com-
pact. In what follows we shall use the notations of [5].2

Proor. Assume x(8)—s%o. Then (x(8))~! is a set of points having
a limit point y, and thus there is a function a(8) which is cofinal in
A and such that (x(a(8)))~'—ay. Continuity of multiplication now
implies that y =x5". A similar argument shows that there is only one
limit point of the points (x(8))~! and the continuity of division
follows.

1 See discussion following the proof of Theorem 14.
? Numbers in brackets refer to the bibliography at the end of the paper.
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PROOF OF THE THEOREM. Let x be an arbitrary element of S. In
view of Lemma 1, we may assume that the elements x*, n=1,2, - - -,
are distinct. Thus they have a limit point 2, and there is a function
n(8) such that x"®—,z,. Clearly we may assume that all #(8) are
greater than 1. Thus the points x"®-! have a limit point z;, and there
is a function a(6) cofinal in A for which xn(e®)—1—,2, whence x2; = 2,
owing to the continuity of multiplication. In this manner one con-
structs a sequence z, such that x"z,=2, (the z, will be distinct!).
There is a function 8(8) which is cofinal in A and for which z,@s)—a2’,
where 2’ is a limit point of the sequence z,. Hence x*®®)z, sy, — 4202’
=20, and we conclude, using Lemma 1, that S has an identity.

Since xS is again a semigroup satisfying the hypotheses of Theorem
14, it follows that xS has an identity which is easily seen to be the
identity of S. Thus x~! exists and S is a group. An application of
Lemma 2 yields the desired result.

Note that the Hausdorff property of the space is employed only
to insure the uniqueness of limits. If we relax this restriction and
demand only that points be closed sets (73), the theorem fails to
hold as the following example shows: Let IV be the non-negative
natural numbers, clearly an additive (indeed abelian) semigroup with
a cancellation law. Topologize N by defining the neighborhoods of a
point 7 as follows: a neighborhood of # consists of the point # and
the complement of some finite set of integers. Thus topologized, NV is
a compact T space which is not a Hausdorff space, and addition is
continuous in both variables,

Iwasawa has published a proof of Theorem 14 in Stgaku vol. 1
(1947), for the case of S bicompact. At the suggestion of the editors
we include a brief sketch of his proof: By Zorn’s lemma there is a
minimal nonvacuous closed subset 4 of S such that ASCA. Thus
foraind,aS=A4.If xisin S,ain 4, then ax is in 4, axS=4 =aS,
and xS=S. Dually, Sx=3S, whence S is a group. The class of all
left and right translations of S is equicontinuous since multiplica-
tion is continuous on the compact space SX.S and therefore uni-
formly continuous on SX.S. The continuity of inversion is shown as
follows: if x is close to ¥, then xy~! is close to the identity and y—!
is close to x~. According to a personal communication, J. E. L.
Peck has obtained a similar result.

5. Metric semigroups. If S is a semigroup with an invariant metric,
then S is a topological semigroup since a,—a, b,—b imply d(a.b., ab)
<d(a.b., a.b)+d(a.b, ab) =d(b., b)+d(a., a)—0, a.b,—ab, where d
is the distance in S. We now introduce a norm in Q(S) as follows: if
A=¢(a, b) is in Q(S), we define
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l4] = inf (@, &) + (¥, €)).

(a’,b")R(a,b)
Regarding this norm the following theorem holds.

THEOREM 15. Let S be as above and let Q(S) be metrized by D(A, B)
=||AB“||. Then Q(S) is a topological group with an invariant metric
D; Q(S) is discrete if and only if S is discrete; @ is open on SXS; ¢
restricted to SXe is open and continuous at e; finally, if R is open, ¢
restricted to SXe 1s continuous and thus S is embeddable in a topo-
logical group with an invariant metric,

PRrOOF. 1. ||-|| is a norm of Q(S): Clearly ||4]| 20 and 4 =E, the
identity of Q(S), implies || 4] =0. If ||4]] —”¢(a, b)|| =0, there exist
sequences @, b, of elements of S such that (e., b.)R(a, b), a.—e,
b.—e, whence, since a¢,b=ab,, b=a and 4 =E. We next observe that
|4B| =||4||+||B||. For let A=¢(ai, @) and B=¢(bs, bs), AB
=¢(a1h1, ash:). Given any positive ¢, select af, b/, a7, b such that
(al, af)R(a, as), (b{, b{)R(by, bs) and d(a{, &)+d(af, &) <||A] +e,
d(b{, e)+d(bs, e) <||B|| +e. Now ||4B|| <d(a!b{, €)+d(af b3, €) since
(G; bl , Q2 bz )R(albl, azbz) But d(a b1 , 8)+d(az’ bz f 8) <d(01 b1 , b1 )
+d(b/, e)+d(aibs, b)+d(d!, e)=d(ai, e)+d({, e)+d(ad, e)
+d(f, e) =||4]|+|1B +2e and ”AB” <||4|l+||B]| as promised. Note
further that |4 = A” —|[¢(a, b)|| =infw 3 r@.n(d(a’, e)
+d(b’, e)) =inf v’ 0 R0, a,(d(b e)+d(a’, e))—l«b(b a)”—”A 1“ If now
we define D(4, B) =||4B~! ”, we see that D is an invariant metric of
Q(S); the continuity of multiplication and division is a consequence
of the invariance of the metric.

2. ¢ restricted to SXe is continuous at the 1dent1ty if A=¢(a, e),
D(4, E)=||4]| =infw sr@.0 (@', €)+d(¥’, €)) Sd(a, €). Therefore,
a,—e implies that 4,—E.

3. ¢ is open. Let A,.=¢(a., b.)—¢(a, b)=A4. We wish to prove
that there exist sequences a., b, of elements of S such that
(ad , b4 )R(@n, b,) and (a, ba )—(a, b). Now inf(.,' by R(aqb.aby (d(a’, €)
+d(b’, e))—0 implies that there exist sequences a,’, b, of elements of S
such that d(a,, €)—0, d(b,, e)—0, (a,, b”)R(a,.b ab,) or a)ab,
=q,bb; ; if we let a4 =a,a, b =b;/b, our assertion is proved.

4. ¢ restricted to SXe is open. Let A,=¢(a., e)—d(a, e)
=A; to show that a.—a. We see that ||4.4-Y|=|¢(a., a)|
=inf @ p')Re,.0)(d(a’, €)+d(b’, ))—>0. Hence, as above, there exist se-
quences & , bs of elements of S such that a) —e, b —e, a)a=a.b. .
Finally d(a,, a)=d(a.bd, abl)=d(aia, ab))=d(a., b!)=Zd(a., e)
+d(e, b.)—0, and our assertion is proved. The fact that Q(S) is
discrete if and only if S is discrete is a consequence of 2 and 4.
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5. Let now R be open; we wish to show that ¢ contracted to SXe
is continuous, or that a,—a implies that 4,=¢(a., ¢)—A4 =¢(a, e).
But D(4,, 4) =l|A,.A“1|[ =inf@’ 1 R(a,.0(d(a’, €)+d(d’, e)). Since
(as, a)—(a, a) and (a, a)R(e, ¢), we have the existence of sequences
a., bd of elements of S such that (a., b, )R(a., a), (a., bd)—(e, €)
because R is open and SX.S and Q(S) are metric (see paragraph
immediately preceding Theorem 4). This last relation shows that
D(4n, A)=inf@ p1r@ma(d(@, )+d(¥', €))=d(ar, €)+d(bs, €)—0
as promised.

THEOREM 16. Let S be a metric topological semigroup such that R is
open. Then the property

1 @b, — b, a, — e implies b, — b
is a necessary and sufficient condition for embeddability.

Proor. The necessity is obvious. The sufficiency is proved as fol-
lows. In the strongest topology on Q(S) relative to which ¢ is con-
tinuous, ¢ is an open continuous mapping by Theorem 2. ¢ contracted
to SXe is continuous. Let now y,—y, where y, and y are in S,
Yn=0¢(xs, €) and y=¢(x, e). Since ¢ is open there exist sequences
ba, ¢n of elements of S such that y,=¢(b,, ¢,), (ba, ¢»)—(x, €); hence
(ba, C2)R(xn, €) OF ba=caxs where c,—e, bn—x, hence, by (1), x.—x; ¢
contracted to SXe is open, whence our assertion.

Note that since an invariant metric implies (1), the last part ot
Theorem 15 is a consequence of the preceding theorem. We also note
the following consequences of the foregoing: if .S as described in our
theorem is (algebraically) a group, it is a topological group. For
future reference we observe that the following is a necessary and
sufficient condition for embeddability which is a stronger necessary
condition than (1): if a,b,—¢, and a,—a, then b, converges.

6. Complete separable metric semigroups. Except when the con-
trary is indicated all semigroups S mentioned hereinafter are com-
plete separable metric topological semigroups with the additional
property:

(2) If U s an open subset of S, then so is aU for all a in S (cf.
Theorem 8).

LeMMA 3. Let { U} be a basis of neighborhoods of e. Then {aU} isa
basis of neighborhoods of a. If f is @ homomorphism of S onto S’ =f(S)
which is continuous at e, then 1t is continuous.

Proor. This lemma uses only property (2) and the continuity of ab
in each variable. 1. Since a U is open and since every open set contain-
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ing a contains some aU (by one-sided continuity of ab), the first
assertion is clear. 2. Let now U’ be a neighborhood of ¢’ =f(e). There
exists a neighborhood V of e such that f(V) =V’ is contained in U’.
Consider now a’ in 8’ and a'U’; since V' isin U’, a’V'=(aV)’ is in
a’U’ which proves the second assertion.

NotE. If Sis any topological semigroup and { U} a basis of neigh-
borhoods of e, then if we retopologize S by letting {aU} be a basis
at a, we get a stronger topology of S with respect to which § is still
a topological semigroup. For, by continuity of multiplication, every
open set containing a contains some aU, and for each au in aU
there exists U; such that auU, is in aU: for u in U there exists U;
such that U, is in U and, therefore, au U, is in a U. The new topology
of S has at least as strong separation properties (T, T3, T3) as the
old one, and, of course, satisfies condition (2) above. Now a semi-
group with property (2) automatically has one-sided continuity of
multiplication: a(bU) is in (ab) U; and the simultaneous continuity
of multiplication in S in the stronger topology is a consequence of the
same property at e in the original topology: given U there exists U;
such that U; is in U; hence aUpU;=abU? is in abU.

LeMMA 4. If C; is a subset of S of the ith category (1=1, 2), then so
is aC; for all a in S; and conversely, if aC is of the ith category, then so
is C.

PRroOF. 1. Let the subset N of S be nowhere dense in S; we prove
that e¢N is nowhere dense in S. We first observe that S and aS are
homeomorphic, because S—aS is open by hypothesis, continuous
by one-sided continuity of multiplication, and 1-1 by the cancella-
tion law. (Note, incidentally, that the homeomorphism of S and a.S,
although implied by condition (2), is weaker than (2), as is shown
by the example of the additive semigroup of the nonnegative reals
with the usual topology.) We observe that if (aX)* denotes the rela-
tive closure of aX in aS, then (aX)®=aX* (where the single super-
script ¢ denotes the closure in S): (¢ X)* = (aX)*NaS since y in (aX)*
is equivalent to y's being in (aX)¢ and in aS. Now, (aX)‘NaS=aXe.
We know by continuity of multiplication that aX° is a subset of
(aX)°; hence aX“NaS=aX¢ is in (aX)*NaS. Let now z=ay be in
(eX)*NaS. Since ayU is open, where U is a neighborhood of e,
ayUNaX is not empty; therefore, yUNX is not empty, since {yU}
is a basis of neighborhoods of y by the first part of Lemma 3. We can
conclude that y is in X¢, z=ay is in aX* and, therefore, (¢X)*N\aS
is a subset of eX¢, (aX)*=(aX)*NaS=aXe. Finally, in order to
prove that aN is nowhere dense, assume, on the contrary, that there
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exists an open set G such that G is dense in (¢N)¢. Then GNasS is
not empty since g in G implies that g is in (aN)¢; therefore, GNaN
is not empty, and GMaS is not empty. Now GMasS is a subset of
(eN)*MaS=aN¢. But since N is nowhere dense in S, aN is nowhere
dense in aS (by 1 above); hence (aV)* contains no set open in aS;
but (eN)*=aN°and GNaS is open in aS, a contradiction. We now
can conclude that aC; is of the first category in S if C, is of the first
category in S.

2. Let aN be nowhere dense in S; we wish to prove that N is
nowhere dense in S. Assume, on the contrary, that there exists an
open set G in N¢; then the open set aG is in ¢ N° which in turn is
contained in (¢NV)® and e¢N is not nowhere dense, a contradiction.
Again we can conclude that if aC is of the first category in S, so is C.

3. The statements concerning C, aC,, and the converse follow.

LEMMA 5. Let the semigroup S have the property
3) if a.b,—e, by —>e, then a,— e.
Then, if x,y,—y and y,—y, X, —e.

Proor. Since yU is open for open U, x.y, and y, are in yU for
sufficiently large n; therefore, x,y, =7ye., y»=vye. where e,—e, e, —e;
hence %,y =%aye: =Yen, Xnén =e, and x,—e by (3), as desired.

TueOREM 17. Let S, be a semigroup with property (3), and S, another
semigroup. Then every continuous isomorphism of Sy onto S, is open.

Proor. By Lemma 3 it is sufficient to prove that the mapping f
of S; onto S; is open at the identity. Let then f(x.) =y.—e.=f(e1).
We wish to prove that x,—e;. Let e; be a sequence of positive real
numbers such that ¢;—0. Since S, is separable it may be covered by
countably many e-spheres. Their images cover S. which, since it is
complete, is of the second category. Therefore, one of these e;-spheres,
say T, is such that f(T) is of the second category. Since T is a Borel
set, f(T}) is a Suslin set, and, therefore, a Baire set (see [3, p. 249]).
Thus there exists a nonempty open set L, in S, such that LiyNCf(T)
is of the first category where C denotes the complement; and there
exists a nonempty open set Ly, in Ly such that f(T}) is of the second
category at each point of Ly, while LyyN\Cf(T7) is of the first category.
Consider now any y in L;;. Owing to the continuity of multiplication
in S,, there exist open sets Lys, Li3 such that y is in Ly, which in turn
is a subset of Ly, es is in L3, and Lj.L;s is a subset of Ly. Since
yn.—e;, there exists a natural number #, such that, for n2ny, y. is
in Ly3, or y,L;2 is a subset of Ly;. Note that f(T}) is of the second cate-
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gory at each point of Ly, and that LiyMCf(T1) is of the first category.
Consider now Ly, =y,(L12MNf(T1)) which is of the second category by
our above arguments and by Lemma 4. The equation

Ly, = (Lln N f(Tl)) U (Lln N Cf(Tl))

shows that L,,MNf(T}) is of the second category, hence not empty, be-
cause L,, is a subset of y,L;2 which in turn is a subset of L,;, and
LuMNCf(Ty) and hence L1,NCf(Ty) are of the first category. Select
now 1, in LiuMf(T1). y1,a is in f(T1) or y1,,=f(%1,) for some x;,, in
Ty; but yy,, is also in Ly, which is a subset of y.f(T1), or y1,, =¥ (%2,n)
for some %3,, in T, X1, =%.X2,, fOr 7271

Assume now that we have a sequence of open spheres in S;: T
DOT:D - - - DT, T; of radius less than or equal to ¢;, such that
f(T,) is of the second category; a sequence of natural numbers 0 <z,
<ny< - ¢ - <Mnm; sequences Xk, X1,k =XiXzx for my <k <n, where, if
n; Sk <mip, X2 and x;1,, are in T, Assume further that for k2 2n.,,
there exist sequences x3;, %1:=¥i¥5; such that x;, and x;, are in
Tm. We now cover T by a countable number of open spheres of radii
less than or equal €n41 each of which is contained in T'. Since f(T',)
is of the second category, one of these spheres, say Tny1, will have an
image f(Tm+1) of the second category. Just as in the first part of the
proof, we conclude that there exists a nonempty open set Lnyi1.
contained in S; such that f(Tn41) is of the second category at each
point of Luy1,1 while Ly 1yN\Cf(Tmy1) is of the first category; that
there exists a natural number #m41>#7,, and a nonempty open set
Lui1,2 contained in Lyyq,1 such that, for # = #.m41, ¥nLm41,2 is contained
in Lny1,1; and finally that, for # 2 #.,41, there exist sequences x3,, %1,
=x.%3,. such that x;, and x;, are in Tp4;.

We now define %, and %, 5 =%iXs,x for 7, <k <nm.41 to be equal to
%3 and ], respectively. This completes our induction. If we set
%o x=e; for 0<k<m;, and x;i=2x%xxs:, we have defined sequences
Ni, X2.my X1,n=Z%nXs2,n for all #, such that 0<»; < - - - and, if ;<%
<41, X2,» and x1,, are in T; and, therefore, are Cauchy sequences.
Owing to the completeness of S; there exists x; such that x,,,—x;
and also x;,,—x;, since these two Cauchy sequences are concurrent.
Our hypotheses and Lemma 5 now imply that x,—e, since we have
XnXa.n—>X2, X2..—%2. This concludes our proof.

Note that if S; has the property

(4) there exists a neighborhood of the identity all of whose elements
have inverses, and division where possible 1s continuous,
then condition (3) is satisfied. Note also that if the metric of S; is.
invariant, (3) is true. (The invariance of the metric of S; would ma-
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terially simplify the proof of the above theorem.)

The theorem just proved is a generalization of a theorem of
Banach, cf. [1, Theorem 8; 4, Theorem 13].

It is clear that the foregoing theorem will be of use in resolving
questions of embeddability of semigroups satisfying the hypotheses
for S; if the following are satisfied:

Q(S) is complete (that it is metric is clear); S* is closed in Q(S);
AS*is open in S* for all 4 in S*. This last condition implies that if
Utis open in S¥, then so is A U for all 4 in S*, for Uf = SN\ U for some
open subset U of Q(Sy), and AU*=A(S"NU)=4S*NAU which is
open since Q(S) is a group (see Theorem 2).

LeMMA 6. S? is closed in Q(S) if and only if bS is closed in S for all
bin S.

Proor. We note that S is closed if and only if a.—a, b|a, imply
b| a (where x[ y means that there exists z such that y=2x)—in other
words that the relation I is topological in character. We first note
that b| a is equivalent to a’s belonging to 5S. Let now &S be closed,
a0, b|a,., that is, @, in bS. Then ¢ is in 5S and bla. Let finally
a,—a, b[ @, imply that b] a and consider bS. Let a,—a where a, is in
bS; we wish to show that a is also in bS. But a, in S means that
bla,,; hence bl a, a is in bS as desired. Let now bS be closed; we wish
to show that S*is closed, that is, if 4, =¢(a., €)—A4 =¢(a, b), then 4
is in S, that is, b]a. But ¢(a., e)—¢(a, b) implies the existence of
a.!, b! such that a. —a, b!—b, ald =a.bi; b =be, (where e,—e),
a,! =ajbe,, or bla,’.; hence b[a and S is closed. Lastly, let S* be
closed. We wish to prove that b|a., a,—a imply b|a which, by the
first part of the present proof, is equivalent to showing that S is
closed. But b|a. means that there exists a/ such that a.=a/.b.
Thus we have ¢(a., b)—¢(a, b); but ¢la., b) =¢(a., €); therefore,
é(a, b) is in S* as desired.

Note that the fact that 5S is closed for b in S implies that bF is
closed for all closed subsets F of S and all b in S: bf,—« implies that
bl x or that x is in bS, or that x =bs; hence we have bf,—bs or bf, =bse,
(where e,—e), fn=se,—s in F, x=>bs in bS, bF is closed.

LEMMA 7. Condition (4) implies that bS s closed for all b in S.

Proor. Observe that bI @n, an—a imply that ¢, =a. b for some a,,
and a,=ae, for e,—e; therefore, ae,=a. b, for n sufficiently large,
a=a, be;' and b|a.

We mention two further conditions insuring that S be closed for
all b in S: (1) bS is closed if and only if bs,—x implies that there



1951] EMBEDDING SEMIGROUPS AND INTEGRAL DOMAINS 821

exists s such that s,—s; (2) if the metric of S is invariant, or (which
is implied by it) if the mapping b6S—S is uniformly continuous, then
bS is closed for all bin S.

LeMMA 8. Condition (4) implies that A S* is open in S* for all A in S*.

Proor. Note first of all that by an earlier remark this implies
that if U’ is open in Sf and if 4 is an element of S*, then 4 U* is
open in St Let A,=¢(a,, e)—AoBy=¢(acho, €). We wish to prove
that A,=A4,4, for A in S* and for n large enough. Our hypothesis
implies the existence of a. , b such that a,;) —acbo, b, —e, as =aaby ;
but (b/)"! exists for » large enough; hence a. (b)) '=a. and a,
=aobe, (Where e,—e) or aoboen(bs ) '=an=0001,,, Where a1,
=boen(bd )Y, An=0(an, €) =d(ao a1, €) =AA, where A, =¢(asn, €),
as desired. A similar proof shows that (4) also implies that S* is open
in Q(S).

These lemmas establish the truth of the following corollary to
Theorem 17:

COROLLARY. If S is a locally compact semigroup satisfying condition
(4), then S 1s embeddable in a locally compact group.

Proor. We note that Q(S) is the continuous open image of the
locally compact separable metric semigroup SX.S; hence it itself
is locally compact and separable metric; it is complete because it is a
topological group which is locally compact.

The hypotheses of the preceding corollary are not strong enough to
make S a group; a counterexample is the multiplicative semigroup of
the nonzero p-adic integers; nor does condition (4) imply condition
(2)—witness the multiplicative semigroup of p-adic numbers of
absolute value greater than or equal to 2, together with 1 (which is
then an isolated point).
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