
A NONABSOLUTE BASIS FOR HILBERT SPACE

B.  GELBAUM

Al'tman [l]1 exhibits the following biorthonormal system {/„;g„}

over ( — 7T, x),

\x\- | »i« hr .
/o =-»      /i =-cos x,     f2 =-sin x, • ■ • ,
J        Í»1'2        J (x)1'2 J (x)1'2

| x ¡a cos (m + l)x | x |_a sin (w + l)x

^= 555; '     *~»-555 '

*» = 0,1,2, • • • ,

and

|x|~a                  |x|~acosx I x |a sin x

»-paw*     gl =      (x)>/2     ' g2 = ~W^             '

I x |_a cos (m + l)x I x |a sin (m + l)x

« = 0, 1, 2, • • • ,

0<a<l/2, which is a basis for L2( —x, 7r), but which is neither a

Bessel nor a Hubert basis, that is:

1. There is a yEL2(-w, x) such that y= E-T=o (y, g»)/». and

E;-ol(y>gn)|2=».
2. There is a sequence a„ such that E"=o |fl»| 2< °° and yet there

is no zEL2( — it, x) such that z= En-o an/m that is, such that (z, gn)

=a„ for all n.

We shall show that {/„; gn} is not an absolute basis for L2(—x, x)

(see [2, p. 188]).

Lemma.

liminf ||/„||s> 0.

Proof.

1   /* *
H/fH-illi - — I     I * |2a cos2 (m + 1)«**,

V   J -,
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1    C *
||/Wí||i = — I     I x |-2a sin2 (m + l)xdx,        m - 0,1,2, • • • .

ir J -t

Thus

||/Wi||î- — [y/* Ix\2°dx + y/'I*l2acos2(w + 1)*d*l»

||/i.+t||í = — iy J   | * |_t"¿* - y f   I * \~2« eos 2(m + l)*á*J.

As a consequence of the Riemann-Lebesgue lemma, the second

integral of each line approaches 0 as m approaches infinity since

both |x|2a and |x|~2<" belong to Lx(— ir, ir). The first integral of the

first line has the value (2/(2a + l))irîa+1, and the first integral of the

second line has the value (2/(l — 2a))ir1~2a. Thus the assertion of the

lemma follows.

Theorem. {/„; gn} is a nonabsolute basis for L2(—ir, ir).

Remark. The proof which follows applies to real Hubert space.

However, the following statement is easily verified and shows that

the assertion of the theorem is valid in complex Hubert space as

well: If {/„; gn} is a basis [an absolute basis] for real L2(—ir, ir),

then it is also a basis [an absolute basis] for complex L2( — ir, ir).

Proof of Theorem. Let xn=/n/||/n||2, -X„ = ||/„||sg„. Then if

{fn, gn} is an absolute basis, so is {xn; Xn}, and furthermore, ||x„||j

= 1. Thus using [2, Theorem 14],2 we see that, for each yEL2(—ir, ir),

Er.o \(y, Arj|2<oo. For the special y of 1., ET-o | (y, gn)|2=°°.

Now En% I (y, Xn)\2= En-o | (y, gn) 12||/n||L whence lim infB..||/,||J
= 0. Since this contradicts the lemma, the assertion follows.
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