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1. Introduction. A classical dynamical system as defined by a

system of ordinary differential equations may be considered as a one-

parameter transformation group acting on a topological space. Ex-

tensive results concerning such systems have been obtained by

various authors (see, for example, G. D. Birkhoff [l]1).

In this paper a generalized dynamical system is considered, such a

system being defined as a topological group of transformations acting

on a topological space. Basic results for such systems have been ob-

tained by Gottschalk and Hedlund [2], and the fundamental con-

cepts in their paper are adopted here.

The problem of characterizing by an incompressibility property

the properties of pointwise periodicity and recurrence in the case of

a topological space has been considered by G. T. Whyburn [4]. It

would seem of interest to obtain analogous results in the generalized

dynamical system. This is the objective of the present paper.

The definitions of periodicity, recurrence, regional recurrence, and

stability are stated in the generalized dynamical system so that they

reduce to the classical ones in case the group is the group of reals.

2. Definitions. Let Zbea separable metric space and let T be a

multiplicative abelian topological group with identity element e.

Let T act as a transformation group on X in the sense that to each

pair (x, t) where xEX and tET, there is assigned a point of X de-

noted by xt such that xe = x, (xt)s—x(ts) for xEX and t and 5 in T,

and such that the function xt defined on the topological product

XXTdefines a continuous transformation of XXT into X.

In the topological group T, we assume that there exists a compact

neighborhood U of e which generates T, that is, 7"=U"_1 Un. A

subset SET is said to be a semigroup provided that SSES.

The following definitions were introduced by Gottschalk and

Hedlund [2].

(2.1) Definition. A semigroup SET is said to be a replete semi-

group provided that 5 contains some translate of each compact sub-

set of T.

(2.2) Definition. A subset AET is said to be an extensive set
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provided that A intersects every replete semigroup in T.

(2.3) Definition. A subset D ET is said to be relatively dense pro-

vided that T = DK for some compact subset K~ET.

3. Periodicity and incompressibility.

(3.1) Definition. A point xEX is said to be periodic under T,

provided that there exists a relatively dense subgroup GET, such

that xG = x [2].

The set of all points of X which are periodic under T will be de-

noted by P.

We note the following equivalent characterization of a periodic

point.

(3.2) Lemma. In order that a point xEX be a periodic point under

T, it is necessary and sufficient that xExS for every replete semigroup

SET.

The proof of this lemma follows immediately from the fact that

G is a relatively dense subgroup provided that G is an extensive sub-

group [2, Lemmas 10 and 14].

It is easily proved that the set of periodic points of X is an in-

variant set.

(3.3) Definition. The transformation group T is said to be point-

wise periodic provided that every point of X is periodic under T.

The following generalization of a theorem due to G. T. Whyburn

[4] has been proved by Gottschalk and Hedlund [2, Theorem 8].

(3.4) Theorem. In order that T be pointwise periodic, it is necessary

and sufficient that if M be a subset of X and S a replete semigroup in T

such that MS EM, then M—MS = 0.

The following theorem yields a characterization of a property of

the set of periodic points of X in terms of an incompressibility

property.

(3.5) Theorem. In order that the periodic points of X form a residual

set in X, it is necessary and sufficient that if M is a subset of X and S

is a replete semigroup in T such that M S EM, then M—MS is a set

of the first category.

Before proceeding to the proof of the theorem several lemmas will

be proved.

(3.6) Lemma. Let S be a replete semigroup in T. Let A be the set of

all xEX such that xExS. There exists a subset DEX such that A ED

\JDS\JDS~1, and the three sets D, DS, and DS"1 are mutually disjoint.
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Proof. With respect to the replete semigroup S, we say that the

subset B has the property P provided that BC\BS = 0. It is easily

verified that the property P has finite character. It follows from

Zorn's lemma that if A 9e 0, there exists a set D containing x which

is maximal with respect to property P.

Since D has property P, DC\DS = 0, and thus also Dr\DS~1 = 0.

Now suppose that DSC\DS~19i0, that is that there exist dh d2ED,

and Si, s2ES, such that ¿iSi = d2s2~1. Then diSiS2 = d2 and d2ED. We

conclude that D, DS, and DS~l are mutually disjoint.

Suppose that there exists a point xEA such that xED^JDSVJDS-1.

Let D*=D\Jx. If D*C\D*S^0, then there exist d?, d2*ED* and
sES, such that di* = d2*s. If df, d2*ED, then Di\DS^0, which is
impossible. If dfED and d*=x, then d? = xs, or x = d^s~1EDS~1.

This again is impossible. If d* = x and d2*ED, we infer that xEDS,

which is impossible. Finally, if df=d2* = x, that is, that x = xs, then

xEA, which is a contradiction. Thus we conclude that D* has prop-

erty P, and D is not maximal with respect to property P. We con-

clude that A EDVJDS\JDS-K If A = 0 we define D = 0. This com-
pletes the proof of the lemma.

A set D, the existence of which is assured by the lemma, will be

denoted by D(S).

(3.7) Lemma. If Mis a subset of X and S is a replete semigroup in T

such that MS EM implies that M— MS is a set of the first category, then

if D is a set D(S), it follows that D is a set of the first category.

Proof. Let E = D\JDS. Then ES = DSEE, and by hypothesis
E — ES is a set of the first category. Since DC\DS = 0, we infer that

DEE —ES, thus D is also of the first category, and the proof of the

lemma is completed.

(3.8) Lemma. Let S be a replete semigroup in T and let D be a set

D(S). Then if for every subset M of X and replete semigroup S* in T it

is true that M— MS* is a set of the first category when MS* EM, it fol-

lows that the sets DS and DS~l are of the first category.

Proof. Let F be a symmetric compact neighborhood of eET. De-

fine 5* = i^B£v2Sv. Then S* is a replete semigroup in T [2, Lemma 4].

Define Q = DV. Suppose that QC\QS*^0. Then there exist a*,, d2ED,
Vi, ViE V, and s*ES* such that diVi = d2v2s* or di = dtV2Vils*. However,

v2lviEV2, and we infer that s*ESv21Vi, or di = d2s, where sES. This

is impossible since DC\DS = 0, and thus we conclude that QC\QS*

= 0.
Let R = QVJQS*. Surely RS* = QS*ER, and since QC\QS* = 0 it
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follows that QER — RS*. Since R — RS* is a set of the first category,

we infer that Q is likewise of the first category.

There exists a countable sequence Si, s2, • * • in S such that

SEUZiVsi. Since DS = D(\JZiVsi)EUZ1DVsi = {JZ.iQsi and Q is a
set of the first category, each of the sets Qsí is of the first category

for î'= 1, 2, • • • , we infer that DS is also of the first category. By a

similar argument it follows that DS-1 is of the first category, and the

proof of the lemma is completed.

(3.9) Corollary. Let S be a replete semigroup in T and let A be the

set of all xEX such that x6£xS. If for every subset M of X and re-

plete semigroup S* in T satisfying MS*EM it is true that M—MS*

is a set of the first category in X, then the set A is of the first category.

Proof. The proof follows from Lemmas 3.6, 3.7, and 3.8.

We now proceed with the proof of Theorem 3.5.

Proof. We first establish the necessity of the condition. Let M be

a subset of X and 5 a replete semigroup in T such that MS EM. If

xEM and x is a periodic point.in X, then xExSEMS. It follows

that M—MSEX — P, where P denotes the set of periodic points of X,

and we conclude that M—MS is of the first category which estab-

lishes the necessity of the condition.

If the group T is compact, the single element e ET is itself a rela-

tively dense subgroup in T, and it follows that each point of X is a

periodic point.

If T is not a compact group, corresponding to a given symmetric

compact neighborhood V of e, there exists a basis Si, S2, • • • for the

replete semigroups of T, such that Si(~\V=0, i = l, 2, • • • , and

such that for any replete semigroup S, there exists an integer re such

that S„CS [2, Lemmas 9 and 10],

For each positive integer i, let Ai be the set of all xEX such that

x^xSj. We show that X-PE^T-Ai. For suppose that xEX-P.
Then there exists a replete semigroup SET, such that xExS. There

exists a positive integer i, such that S.CS, and therefore x(£xS,-, or

xEAi.
But from Corollary 3.9, each Ai is a set of the first category,

î = 1, 2, • • • , and we infer that X—P is a set of the first category.

We conclude that P is residual in X and the condition is sufficient.

4. Recurrence and incompressibility.

(4.1) Definition (cf. [2]). A point xEX is said to be recurrent

under T provided that to each neighborhood U of x there cor-

responds an extensive set A C T such that xA C U.
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The set of all points of X which are recurrent under T we denote

by R. We note also the following equivalent characterization of a

recurrent point.

We adopt the following convention throughout the remainder of

the paper. For FC A" and H ET, [YH] denotes the closure of the

set YH.

(4.2) Lemma. In order that a point xEX be recurrent under T it is

necessary and sufficient that xE [xS] for every replete semigroup SET.

It is easily proved that the set of recurrent points of X is an in-

variant set.

(4.3) Definition. The transformation group T is said to be point-

wise recurrent provided that each point of X is recurrent under T.

The following theorem [2, Theorem 7] states a characterization of

pointwise recurrence in terms of an incompressibility property.

(4.4) Theorem. In order that T be pointwise recurrent it is necessary

and sufficient that if M be a closed subset of X and S a replete semigroup

in T such that MS EM, then MS = M.

In general, the transformation group is not pointwise recurrent.

However, it is still possible to characterize the set R in terms of an

incompressibility property.

(4.5) Lemma. // M is a closed subset of X and S is a replete semi-

group in T such that MS EM, then there exists a replete semigroup

S*CS, such that for all xEM-MS, xE[xS*].

Proof. Let K be the closure of a compact neighborhood of e which

generates T. Since S is a replete semigroup in T there exists an ele-

ment tET such that KtES. Define H = Kt. H is then also a compact

set and S* = U,T-iiPl is a replete semigroup which is contained in S.

Since H ES, and by hypothesis MSEM, we infer that MHEMSEM,
and hence by induction that MHnEMH for » = 1, 2, • • • . Thus

MS*EMH. Now suppose that x£[xS*], and that xEM. Then

xE[xS*]E[MS*]E[MH] = MHEMS. Thus for all xEM-MS,
xE[xS*]. From this we also conclude that xEX — R.

(4.6) Definition (cf. [2]). The transformation group T is said

to be regionally recurrent provided that to each open set UEX there

corresponds an extensive set A E T such that for each a EA, UC\ Ua

The following theorem states the desired incompressibility prop-

erty which characterizes a property of the set R.

(4.7) Theorem. // X is a complete metric space, in order that the
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recurrent points of X form a residual set in X, it is necessary and

sufficient that if M is a closed subset of X and S a replete semigroup in

T such that M SEM, then M—MS is a set of the first category.

Proof. The necessity of the condition follows directly from Lemma

4.5, for M— M S EX—R which is a set of the first category by

hypothesis.

In order to show the sufficiency of the condition, it is enough to

show that T is regionally recurrent [2, Theorem 3]. If this were not

the situation, there would exist an open set UEX and a replete semi-

group SET, such that UC\US = 0. Now let Z be the closure of a

sphere of positive radius which is contained wholly in U. Surely

Ur\ZS = 0, from which we infer that UC\[ZS]=0, and also that

zr\[zs] = 0.
We define M = ZU[ZS], which is a closed set. Certainly MS EM,

and thus by hypothesis M — MS is a set of the first category. But since

ZEM—MS, we infer that Z is also of the first category. This, how-

ever, is impossible in a complete metric space, and we infer that T

must be regionally recurrent. Finally then R is a residual set, and

the proof of the theorem is completed.

(4.8) Definition. A point xEX is said to be wandering under T

provided that there exists a neighborhood U of x and a replete semi-

group SET, such that U(~\US=0.
It is easy to see that the definition stated here reduces to the cor-

responding classical one if the group T is the real axis. We denote

the set of all wandering points of X by W.

(4.9) Definition. The transformation group T is said to be point-

wise nonwandering provided that each point of X is not a wandering

point under T.

Clearly the properties that T be regional recurrent and that T be

pointwise nonwandering are equivalent.

We shall now show that if a properly chosen set of the first cate-

gory is excluded, the space X can be decomposed into two invariant

sets such that every point of the first is a recurrent point and every

point of the second is a wandering point.

(4.10) Theorem. Let X be a complete metric space. The set RSJW

is a residual set in X.

Proof. Since both R and W are invariant sets, it follows readily

that R\JW is a closed invariant set. The set Y=X-(R\JW) is then

an open invariant set.

It is easily proved that no point of F is a wandering point in the
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set Y and no point of F is a wandering point in the set Y.

Define K = Y, and let Rk denote the set of all points of K which

are recurrent in K. Since every point of K is nonwandering in K, T

is regionally recurrent in K, and therefore Rk is dense in K [2,

Theorem 3, Corollary 2].

Certainly RkER, and therefore YEK = RKER. Bjit YEX-R,
and we conclude that Y=0. Thus we infer that X = R^JW.

The set W—W is nowhere dense in X and since R is a residual

set in R, R — R is a set of the first category in R and hence also in the

space X. Finally then X-(RVJW) = (R-R)yj(W-W) is a set of

the first category and we infer that RSJW is a residual set in X. This

completes the proof of the theorem.

5. Stability and incompressibility.
(5.1) Definition. If S is a replete semigroup in T, the set A ES is

said to be extensive in S provided that .4^5*5^0 for every replete

semigroup S* of T which is contained in S.

(5.2) Definition. If S is a replete semigroup in T, a point xEX is

said to be recurrent under S provided that corresponding to every

neighborhood U of x, there exists a set 4, extensive in S, such that

xAEU.
We denote the set of all points of X which are recurrent under S

by R(S).
(5.3) Definition. The point xEX is said to be stable with respect to

S, a replete semigroup in T, provided that [xS] is a compact set.

We denote the set of all x£AT which are stable with respect to S

by 2(S), and the complementary set X—2(S) by U(S), that is, the

set of points of X which are unstable with respect to S.

(5.4) Lemma. // M is a compact subset of X and S* is a replete semi-

group in T such that MS*EM, then for all xEM-MS*, xEU(S*)
KJR(S*).

Proof. By Lemma 4.5 there exists a replete semigroup S'CS*,

such that for all xG M- MS*, xE[xS']. Thus we infer that xER(S*).
Also xS*EMS*EM. Therefore [xS*] is a compact set so that

xEU(S*). This completes the proof of the lemma.

(5.5) Theorem. In order that X=U(S){JR(S) for every replete

semigroup SET, it is necessary and sufficient that if M is a compact

subset in X and S* is a replete semigroup in T such that MS*EM,

then M-MS* = 0.

Proof. The necessity of the condition follows directly from

Lemma 5.4.
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Now suppose that the condition is satisfied and that there exists a

point xEU(S)\JR(S) for some replete semigroup SET. In par-

ticular xER(S), so that there exists a replete semigroup S*ES such

thatx<£ [xS*]. Let M=xVJ[xS*]. ThenxEM-MS*. SincexEU(S),
[xS] is a compact set, and since M = xU[xS*]CxW[xS] it follows

that M is also a compact set. We have MS*E [xS*]EM, and there-

fore by hypothesis M— MS* = 0 which contradicts the conclusion

that xEM-MS*. We infer that A= U(S)VJR(S), which completes
the proof of the sufficiency of the condition.

(5.6) Definition. The point xEX is said to be stable provided

that [xT] is a compact set.

The set of all xEX which are not stable will be denoted by U.

(5.7) Definition. The point xEX is said to be diffuse provided
that xEU(S) for every replete semigroup SET.

The set of all xEX which are diffuse will be denoted by D.

(5.8) Corollary. If X — RVJD, and if M is a compact subset in X
and S is a replete semigroup in T such that MSE M, then M— MS = 0.

Proof. For every replete semigroup SET, RER(S) and DEU(S).

Thus X = RVDER(S)\JU(S)EX, and therefore X = R(S)\JU(S).
The corollary now follows from Theorem 5.5.

(5.9) Corollary. If for every compact set M EX and for every

replete semigroup SET for which MS EM, M—MS = 0, then X
= RVU.

Proof. From Theorem 5.5, X = R(S)\JU(S) for every replete semi-

group SET. In particular the group T itself is such a replete semi-

group and we infer that X = R(T)KJ U(T) = i?U U.

(5.10) Theorem. If the set R*UD is a residual set in X, and if M is a

compact subset of X and S is a replete semigroup in T such that MS EM,

then M— MS is a set of the first category.

Proof. From Lemma 5.4, M-MSE2(S)r\[X-R(S)]E(X-D)
f^(X-R). This last set however is of the first category by hypothesis.

Thus we infer that M— MS is of the first category, which completes

the proof of the theorem.

(5.11) Theorem. Let X be a locally compact, complete, separable

metric space. If, for every compact subset MEX and for every replete

semigroup SET for which M S EM, M—MS is a set of the first cate-
gory, then the set R\J U is a residual set in X.

Proof. Since the space X is locally compact and separable, there

exists a monotone sequence of compact subsets of X: XiEXsE ■ • •
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with the property that if M is a compact subset of X, MEXn for

some positive integer re. Let Si, S2, • • • be a countable basis for the

replete semigroups in T.

For positive integers m and re, we say that the point xEX is in

the set E(n, m) provided that the distance d(x, [xS„]) ^ \/m. The set

E(n, m) is then a closed set.

For positive integers m and re, let G(n, m) denote the set of all

xEX such that xEE(n, m) and xS„CA"m. Then G(n, m) is also a

closed set.

We show that (X- U)r\(X-R)E^Zm~yG(n, m). Let xE(X-R)
i~\(X— U). Since x(£i?, there exists a replete semigroup SET such

that x££[xS]. There exists a positive integer re such that S„CS, and

we infer that x(£[xS„]. There exists a positive integer q, such that

for all integers i~^q, d(x, [xS„])èlA- Thus we conclude that x

EE(n, i) for all i^q. Now since xEX— U, [xT] is a compact set

and therefore [xS„] is compact. Hence there exists a positive integer

A such that [xS„]CA"t, and thus for all positive integers ps^k,

[xS„]CATp. Let us now choose an integer ret such that m>p+k. We

then have x££(re, m) and [xS„]CArm, from which we infer that

xEG(n, m). Thus (X-U)i\(X-R)E^Zm-iG(n, m).
Suppose that the set G(n, m) is not nowhere dense. There exists

an open set VEG(n, m) of diameter less than \/m and such that

F is a compact set. Let M=V\J[VSn]. Since VSnEXm, [VSn] is a

compact set and therefore M is also compact. But MSnEM, so that,

by hypothesis, M— MSn is a set of the first category. Since V

EE(n, m), and since the diameter of V is less than i/m, we infer

that Vn[VSn] = 0. But MSnE[VSn], and therefore VEM-MSn,

which is impossible in a complete metric space. Thus G(n, m) is a

nowhere dense set and we conclude that (X — U) (~\ (X — R) is a set

of the first category. Therefore U\JR is a residual set in X and the

proof of the theorem is completed.
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