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1. Introduction. A well known theorem due to Hurwitz asserts that

if the sequence of functions fn(z) analytic in a closed region R con-

verges uniformly in R to the function f(z) which does not vanish on

the boundary B of R, then for n sufficiently large the functions f(z)

and fn(z) have the same number of zeros in R. Hurwitz's theorem may

be applied either to R or to mutually disjoint neighborhoods N(zk)

in R of the distinct zeros zk of f(z) in R; for n sufficiently large, each

N(zk) contains the same number of zeros of /„(z) as of f(z), and no

zeros oifn(z) lie in R exterior to the N(zk).

Hurwitz's theorem is ordinarily proved from the theorem of

Rouché: If f(z) and F(z) are analytic in a region R whose boundary is

B, and if we have on B the relations f(z)^0 and

f(z) - F(z)

(1) fM < Lf(z)

thenf(z) and F(z) have the same number of zeros in R. A less precise but

qualitatively identical theorem can be proved by Hurwitz's theorem:

If a function f(z) analytic in R is different from zero on B, there exists

a number 8 (>0) depending on f(z) and R such that the inequality

\f(z) — F(z) \ <8 on B for a function F(z) analytic in R implies thatf(z)

and F(z) have the same number of zeros in R. If this statement is false,

there exist functions Fn(z) analytic in R with

|/(«)-Fn(*)| <i/n   in   R,

where Fn(z) and f(z) do not have the same number of zeros in R; the

sequence Fn(z) converges uniformly to f(z) in R, and this contradicts

Hurwitz's theorem. Of course it follows from Rouché's theorem that

we may choose 5 = min \f(z)\ on B.

Thus Hurwitz's theorem and Rouché's theorem are intimately con-

nected with each other and with the measure of approximation

max I f(z) — F(z) |,       z in R,

as metric; this formulation suggests the corresponding study of other

measures of approximation, such as the metric
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(2) f |/(*)-*(*) Is 1*1.
JB

where B is assumed rectifiable and R is bounded. For functions f(z)

and fn(z) analytic in R the relation

(3) f |/(*)-/„(*) I11 <fe |-»0
JB

does not imply the uniform convergence of the sequence/„(z) to/(z)

in R, but (by use of Cauchy's integral formula) does imply such

uniform convergence in every closed subregion of R interior to R.

Thus, by a repetition of the reasoning already set forth, it follows

that if f(z) and R are given, if we choose a closed subregion i?i of R

interior to R on the boundary of which/(z) is different from zero, and

if we choose disjoint neighborhoods N(zk) in i?i of the distinct zeros

zk of f(z) in Ri, then there exists a number 5i (>0) such that the in-

equality

f \f(z)-F(z)\2\dz\ <oi
J B

implies that F(z) has precisely the same number of zeros in Ri and in

each N(sk) as does f(z), and F(z) has no zeros in Ri exterior to the N(zk) ;

here Si depends on/(z), R, Ru and the N(zk), but not on F(z). Indeed,

if we use Cauchy's integral formula

l/(s) - F(z)]2 = — I    -, z in R,
2-kxJb t — z

it follows from Rouché's theorem that we may choose

oi = 2-ird- [min | f(z) \2 on boundary of Ri + ]£ N(zk)],

where d is the distance from B to 2?i.

The object of the present note is to study the analogue of Rouché's

theorem, and in particular to determine the best number 5i in the

simplest nontrivial cases, namely that where R is the unit circle and

f(z) is a power of z.

Condition (3) does not imply the uniform convergence of fn(z) to

f(z) in R, so it is not to be expected that fn(z) and f(z) necessarily

have the same number of zeros in R.

Theorem 1. Let ß be a given non-negative integer, and let positive

numbers e and N be given with N integral. Then there exists a function

\p(z) analytic for \z\ ^ 1, with precisely ß + N zeros in \z\ < 1, such that
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(4) f |iKz) -z»\2\dz\ <(.
J c

We set

/z + aY

\1 + azf

where a is to be further restricted later. On C we have \&(z) | =1, so

the first member of (4) can be written

r\/z + a\N       I2.     ,

J c I M + az/ I

/• T        /z + a\N     /z + äVHdz

" JcL2 ~ Vl + az/   ~ \1 + 51/ J&  = 47rL1

and this last expression is less than e if a is chosen sufficiently near

unity.

We denote by H2 the class of functions 2~lanZn analytic interior to

C, with 2~11 azn |2 convergent ; it is then well known that boundary

values for normal approach exist almost everywhere on C, and are

integrable and square-integrable (Lebesgue) on C, and that Cauchy's

integral formula is valid. We introduce the notation

[/(«), F(z)] m - C | /(*) - F(z) \2 \dz | = ¿ | Cn |2,
¿IT J C 0

where the function /(z) — F(z) = 2~2ô cnZn is assumed of class H2. To

Theorem 1 we add the

Corollary. Let ß be a given non-negative integer, and let e (>0)

be given. Then there exists a function \p(z) of class H2, with infinitely

many zeros in \z\ < 1, such that we have

[rp(z), z"] <€.

We set

1      | Pi |     ßkZ — 1

with \ßk\ < 1, where the 0t are to be further restricted later. We then

have1

1 For the details here, the reader may refer to the writer's Interpolation and ap-

proximation by rational functions in the complex domain, Amer. Math. Soc. Colloquium

Publications, vol. 20, New York, 1935, §10.1.
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[z"Bn(z), Z"]   =   [Bn(z),  l]   =  4tt[1  - | ßiß2 ■  ■  ■ ßn\].

If the ßk are chosen infinite in number so that the corresponding

Blaschke product

B(z) = lim Bn(z)

converges (\z\ <1), the sequence Bn(z) converges (loc. cit.) in the

mean on C to the boundary values of B(z), and we have with \p(z)

= z"B(z)

[*(«),*•] = Mi-|fc&.-. II;
the second member is less than e if the ßk are suitably chosen.

2. Main theorems. We turn to an analogue of Rouché's theorem

iord(z) = l.

Theorem 2. Let f(z) be of class H2, with

(5) [f(z), 1] < (1 - r2), 0<r<l;

thenf(z) has no zeros in the closed region \z\ ^r.

We set f(z) = 2o a„zn. By Cauchy's algebraic inequality we have

for \z\ —r

CO

| f(z) -l|^|flo-l| + Zl ß«2" I
i

[oo -11/2   r    oo -11/2

|a0-l|2+E|an|2J    {CM2]    ■

Of course we have, by the orthogonality properties of the powers of

z,

[/(«),  lj-[| «0-   l|2+¿k|*],

whence on \z\ =r

(6)
/(*) - 1

1
<1;

it follows that/(z) has no zeros in \z\ ^r.

The conclusion of Theorem 2 is not valid if we replace the second

member of (5) by any larger number, for if we set f(z)

= r(r — z)/(l—rz), which has a zero on the circle |z| =r, the first

member of (5) is (1— r2).
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Theorem 2 is essentially a limiting case of

Theorem 3. Let p be a positive integer, and suppose for some r

(OO<1) we have

[f(z), z"] < r2"(l - r2),

where f(z) is of class H2; then f(z) has precisely p. zeros in the region

Iz\ <r and no zero on the circle \z\ =r.

More explicitly, suppose we have

0 < í < e, = m"/(1 + ß)1+",

and denote by ri and r2 (0 < ri < r2 < 1) zeros of the equation

(7) r2*(l - r2) = €.

Iff(z) is of class H2, and if we have

(8) [/(z), j] < e,

then f(z) has precisely u zeros in the region \z\ Oj and no zeros in the

closed annulus ri^\z\ ^r2.

We prove the latter part of Theorem 3, which includes the former

part. It follows from Descartes's rule of signs that equation (7) has

no more than two positive roots rx and r2; the first member of (7)

vanishes for r — 0 and r = \, is positive in the interval 0<r<l, and

has there the maximum value e„. The first member of (7) is greater

than e in the interval ri<r<r2.

If we set/(z)= 2~lo anzn, we have for \z\ =r<l by Cauchy's in-

equality

|/(z)-z*| Ú [\ ao\2 + \ ai\2 + ■ ■ ■ +\ a».i\2 + \ aß - \\2

+ k+i|2+---]1/s[¿kl2J'2.

We also have

[/«. 2"] = [ | «o |2 + | ai |2 + • • • + | a, - 112 + • • • j,

whence on \z\ =r (<1)

f(z) - z"

z"

fl/2

f (1 - r2)1'2

and this last member is not greater than unity for r in the closed

interval ri^r^r2. The conclusion of Theorem 3 follows from Rouché's

theorem.



676 J. L. WALSH [October

The latter part of Theorem 3 is not valid if we replace the

second member of (8) by any larger number, for if we set f(z)=z"

— r"(l—r2)/(l—rz), the function/(z) has a zero z = r on the circle

\z\ =r; for this function the first member of (8) is r2f(l— r2).

At least so far as concerns approximation on C to the functions

z", M = 0> Theorems 1,2, and 3 give a complete solution to the problem

proposed, namely the investigation of (2) as a measure of approxi-

mation,with reference to the number and location of the zeros of the

approximating functions interior to C. These results have been

established by the use of Rouché's theorem itself and standard meth-

ods; no new principle to replace Rouché's theorem is needed here.

The application of Theorem 2 in the study of a specific function

F(z) of class H2 is not unique, for we may set/(z) =AF(z), where A

is an arbitrary constant. It is natural to choose A so that [AF(z), l]

is as small as possible; thus if we have F(z) = ^¿° anzn, we should

minimize

[AF(z), 1] = | Aao - 112 + | Aai \2 + \ Aa2 \2 -\-.

It is clear that for given | A | we should choose arg A so that Aao is

positive (we ignore the trivial case ao = 0), so we have |.4ao —1|

= | | A| |ao| — 11. The minimum for all \A\ of the function

||¿||a„| - l|, + |^l,lfli|, + Mil«*l,+ •••

occurs for   |.<4| = |a0| /[|ßo| 2+ |ai| 2+ • • • ]  and  equals

l-|ao|2/[|ao|2+k|2+ •••].

Inequality (5) then takes the form r2< \a0\ 2/[\ao\ 2+|ßi| 2+ ' ' • ]•

It follows that if the function F(z) = YLo anZn with ao^O is of class H2,

then F(z) has no zero in the region

\z\ <|<zo|/[|ao|2 + |a1|2+ ••• J1'2.

This result is due to Petrovitch,2 and was later studied also by

Landau.3

Just as there are various ways of applying Theorem 2 to a specific

function F(z) oí class H2, there are various ways of applying Theorem

3. The minimum for all A of [AF(z), a*] is 1 - \a„\ 2/[\a0\ 2+|ßi|2

+ •••]. It follows (notation of Theorem 3) that if the function F(z)

is of class H2, and if we have

2 M. Petrovitch, Bull. Soc. Math. France vol. 29 (1901) pp. 303-312.
» E. Landau, Tôhoku Math. J. vol. 5 (1914) pp. 97-116.
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i _|fl(1|y[|«o|, + |fli|,+ ... ] <e<e„,

then f(z) has precisely ß zeros in the region \z\ <ri and no zeros in

the closed annulus rx ̂  | z | ^ r2.

Theorem 3 is closely analogous to the well known theorem of

Pellet, that the condition

| ak | rk > | a0 \ + \ aj | r + • • • + | ak-i | r*_1

+ | ak+i | rk+l + ■ ■ • + | an | r"

implies that the polynomial XIo aiz'nas precisely k zeros in the region

\z\ <r; Pellet's theorem applies also to a power series converging uni-

formly for \z\ =r.

3. Extremal functions. For the sake of completeness we determine

the extremal functions:

Theorem 4. If the hypothesis of Theorem 2 is modified by replacing

the sign < in (5) by the sign g, then either f(z) has no zeros in the closed

region \z\ ^r or f(z) is of the form l — (l—r2)/(l—yrz) with \y\ =1.

// the hypothesis of Theorem 3 is modified by replacing the sign <

in (8) by the sign ^, then either f(z) has precisely ß zeros in the region

\z\ <r"i and no zeros in the closed annulus rxg \z\ ¿r2, or f(z) is of

the form z" — rf(l— r])/y"(l— yr¡z) with \y\ =l,j = l or 2.

To establish the first part of Theorem 4, we merely notice that

the original proof of Theorem 2 (in particular the use of Cauchy's

inequality) remains valid under the modified hypothesis unless the

two sets of numbers

ao — 1, au a2, ■ ■ - ,    1, z, z2, • ■ •

are each proportional to the conjugate of the other, for some z = Zo,

|zoJ =r:

do — 1 = X,        ai = Xzo,        a2 = Xzo, • • • .

Here we have (in any case under Theorem 4 for which the conclusion

of Theorem 2 is not satisfied)

00

| «o - l|2+ZU»|2= l-r\
1

00

N2ZN2n= i-r2,
o

| X | - 1 - r2.
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Moreover we have (|z| <1)

f(z) m (1 + X) + Xzoz + XzoV + • ■ ■ = 1 + X/(l - z0z),

whose only zero is z = (l+X)/z0; the modulus of this zero is 11+X| /r,

which is not less than (1 — | X | )/r = r and is equal to r when and only

when we have X = — (1 — r2).

The latter part of Theorem 4 is similarly proved. In any case under

Theorem 4 not included in the original hypothesis, the original proof

is valid unless we have for some z = Zo, |zo| =r¡, j=í or 2,

fl—1 p ß+1

ao = X, #i = \zq, • • • i dfi-i = Aso , cift — 1 = Aso» #h-i = Xso , * * • .

Thus we have in any exceptional case

II2 * 12 i 12 i i2 2/i 2
öo |   + I ffi I   + • • • + I «m - 11   + I «H-i I   + • • • = Tj (1 - rj),

|xf¿|*P-rr(i-r¡)f
0

|x|-r^l-r5).

Moreover we have (\z\ <1)

/(z) = X + Xzoz + • • • + Xzo   z     + (1 + Xzo)z

Í.+ 1   M+l

+ Xzo   z     + • • •

= z" + X/(l - zoz).

The zeros oí f(z) are the zeros of zoZ"+1 —zM—X, and in such a zero

we have |X| =rj(l— r2) = |z0z"+1 —z"| = |z"| • 11—z0z|. Thus z is not a

zero of/(z) on |z| =r;- unless we have z = Zo, X= — zj- (1 — r2); Theorem

4 is established.

We mention a further limiting case under Theorem 3: If f(z) is

of class H2 and we have [f(z), z"] =e„, then either f(z) is of the form

z"-r"(l-r2)/y"(l-yrz)withr = ro=[ri/(l+p.)]U2, \y\ =l,orf(z) has

precisely ß zeros in the region \z\ <ra and no zeros on the circle \z\ =\ro.

4. Polynomials. The methods already used apply also in the study

of zeros of polynomials of given degree v, namely functions of the form

piz) = 2Zo a»z"- Here the circle \z\ =1 is of no especial significance,

but we continue to use the measure of approximation (j^/x^O)

[piz),z"] =|a„|2 + |a1|2+ •••

+ | a„-i |2 + | a, - 112 + | aß+i |« + • . • + | a, |».
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The analogue of Theorem 2 is

Theorem 5. Suppose p(z)= ^0 anZn with

[p(z),l]<l/(l + r2 + r*+---+r2');

then p(z) has no zeros in the closed region \z\ ^r.

Theorem 5 is established by the same method as is Theorem 2 ; the

proof is omitted. The analogue of Theorem 3 is

Theorem 6. Suppose p(z)= 2^5 anzn, suppose ß(<v) is a positive

integer, and suppose

(9) [p(z), z"] =A,< r2*/(l + r2 + r* + ■ ■ ■ + r2') ;

then p(z) has precisely ß zeros in the region \z\ <r and no zeros on the

circle \z\ =r.

Consequently, if the equation

(10) 1 + r2 + r4 + • • • + r2' - r*/A> = 0, A„ j¿ 0,

has two positive zeros ri and r2 (>ri), then p(z) has no zeros in the

annulus ri<|z| <r2, and has precisely ß zeros in the closed region

\z\-eri.

It follows by Descartes's rule of signs that (10) has no more than

two positive zeros. Moreover the first member of (10) is positive for

r = 0 and r—>+ 00, so if (10) has two positive zeros as indicated, in-

equality (9) is satisfied in the interval ri<r<r2. Theorem 6 follows

by the Cauchy inequality

I «o + 01Z + ■ ■ ■ + (aM — l)z" + • • • + a*z" |2

g A„(l + r2 + • • • + r2'),

whence we have on the circle \z\ =r, ri<r<r2,

\p(z) -z"\

z"
<1,

and by Rouché's theorem.

A further result for polynomials, which gives an upper bound for

the moduli of the zeros, and which has no analogue for arbitrary

functions of class H2, is

Theorem 7. Suppose p(z) = 2i a*z" and suppose

(11) [p(z), z>] =A,< r*/(l + r2 + ■ ■ ■ + r2');

then all zeros of p(z) lie in the region \z\ <r.
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The proof of Theorem 7 is similar to that of Theorem 6, and can

also be given from Theorem 5 by the substitution w = i/z; it is left to

the reader.

We have already indicated that it may be more favorable to apply

Theorems 2 and 3 to the function AFiz) rather than to a given func-

tion Fiz). A similar remark applies to Theorems 5-7. We formulate:

// we have piz) = X)o anZn with

1 -|«o|2/[|«o|2 + |ai|2+ ••• +k|2]

< 1/(1 + r2 + r< + • • • + r2'),

then piz) has no zeros in the closed region \z\ ^r.

If we have piz) = ]£¡J anzn, 0 <u<v, with

l-|«,|2/[|«o|2 + |ai|2+--- +k|2]

< r2"/(l + r2 + r*+ ■ ■ ■ + r2'),

then piz) has precisely p. zeros in the region \ z\ <r and no zero on the

circle \z\ =r. Consequently if the equation

1 + r2 + r* + ■ ■ ■ + r2" - r2"[\ ao\2 + \ ai\* -\-

+ I <h |2]/[ ! «o |2 + • • • + | <*m-i |2 + | «,+i |2 + • • • + | a, |2] = 0

has two positive zeros ri and r2 (>ri), then piz) has no zeros in the

annulus ri<|z| <r2 and has precisely p, zeros in the closed region

\z\uTi.
If we have piz) = 2~2o anzn, with

i-kl2/[|0o|2 + |«i|2+---+k|2]
< r2'/(l + r2+ r* + • • ■ + r2'),

then all zeros of piz) lie in the region \z\ <r.

Theorems 5-7 contain bounds which cannot be improved. For the

sake of completeness we determine the extremal functions:

Theorem 8. // the hypothesis of Theorem 5 is modified by replacing

the sign < by the sign iS, then either piz) has no zeros in the closed region

\z\ <rorwehavepiz) = í-ií-r2)ií-y+1r'+1z''+1)/il-r2''+2)ií-yrz),

with \y\ =1.
// the hypothesis of Theorem 6 is modified by replacing in (9) the

sign < by the sign ^, then either piz) has precisely p. zeros in the

closed region  \z\ ^r or we have

piz) s2"-r"(l -r2)(l -y'+V+V+Vt^I -r2"+2)(l -7rz)

with \y\ =1. Consequently if (10) has two positive zeros ri and r2, then

either p{z) has no zeros in the closed annulus ri:g ] z\ ^r2 and has pre-
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cisely ß zeros in the closed region \ z\ ^ru or p(z) is of the form

z  - r"j(l - rj)(l - y+ r]  z    )/y(l - r¡   )(1 - yr¡z),  j = 1 or 2.

If the hypothesis of Theorem 7 is modified by replacing in (11) the

sign < by the sign ^, then either p(z) has all its zeros in the region

\z\<r or we have p(z)^z"-r'(l-r2)(l-y'+lr,,+1zp+1)/y(l-yrz)

■(l-r2"+2) with \y\ =1.

5. Related problems. Theorems 2-4 can properly be viewed as

analogues of Rouché's theorem, for approximation on C to the func-

tions z", insofar as such analogues exist; sufficient conditions are de-

rived that/(z) and z" should have the same number of zeros in a suit-

able region interior to C. Still another problem suggests itself, how-

ever:

Problem I. To determine the smallest number r)„ (ß>0) such that for

a function f(z) of class H2 the inequality [f(z), z"] <rj^ implies thatf(z)

has at least one zero interior to C.

Problem I is still open, but it is clear that from Theorem 3 we have

r)^ßl'/(l+ßy+l'- Moreover for the specific function

/.(*) - - (** - l)2(z" + 4)/10,

which has no zeros interior to C, we have [fa(z), z"]=3/10, whence

t?„ ̂3/10.
Modifications of Problem I suggest themselves:

Problem II. To determine the smallest number r/® such that for a

function f(z) of class H2 the inequality \f(z), z"] <r//p, ß^ß>0, implies

that f(z) has at least ß zeros interior to C.

Problem III. To determine the smallest number rj^\v) such that

for a polynomial p(z) of degree v the inequality

[p(z), z] < ijf (*), *£lnZß>0,

implies that p(z) has at least ß zeros interior to C.

A further obvious problem is to replace the metric [f(z), F(z) ] by

the new metric

— f \f(z)-F(z)\»\dz\, p>0;
¿T J C

Cauchy's integral formula then provides a bound on \f(z) — F(z)\ on

the circle \z\ =r<l, but this new metric has no simple relation to

the coefficients in the Taylor developments of f(z) and F(z).

Harvard University


