SELF-ADJOINT FACTORIZATIONS OF DIFFERENTIAL OPERATORS

KENNETH S. MILLER

In this short paper we prove the following result:
Theorem. Let L be an ordinary linear differential operator

$$
L=p_{0}(x) \frac{d^{n}}{d x^{n}}+p_{1}(x) \frac{d^{n-1}}{d x^{n-1}}+\cdots+p_{n}(x) .
$$

of even order $n=2 r . p_{i}(x) \in C^{n-i}$ and $p_{0}(x)>0$ in some closed finite interval $[a, b]$. Then there exists a subinterval of $[a, b]$ in which L has a factorization

$$
L=f(x) P_{1} P_{2} \cdots P_{r}
$$

where each P_{α} is of the second order and formally self-adjoint.
The theorem follows by complete induction after the proofs of Lemmas 1 and 2 below. We use the following notation: If M is a linear differential operator, then its formal or Lagrange adjoint will be denoted by M^{+}.

Lemma 1. Let

$$
N=\frac{d^{n}}{d x^{n}}+q_{1}(x) \frac{d^{n-1}}{d x^{n-1}}+\cdots+q_{n}(x)
$$

be a linear differential operator with $q_{i}(x) \in C^{0}$ in some closed finite interval $[a, b]$. Then there is a subinterval $\left[a^{\prime}, b^{\prime}\right]$ of $[a, b]$ in which N has the representation

$$
N=P M
$$

where $P=P^{+}$is of second order.
Proof. Let $\left\{\phi_{1}(x), \phi_{2}(x), \cdots, \phi_{n}(x)\right\}$ be n linearly independent solutions of $N u=0$ with Wronskian $W(x)$. There exist $n-2$ functions among the $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$ whose Wronskian $\omega(x)$ is not identically zero in some subinterval of $[a, b]$. Let these $n-2$ functions be $\phi_{1}(x)$, $\phi_{2}(x), \cdots, \phi_{n-2}(x)$ and let $\omega(x)$ be unequal to zero in $\left[a^{\prime}, b^{\prime}\right]$.

Define the operator M by the equation:

[^0]\[

$$
\begin{aligned}
& \left.M u=\frac{+1}{W(x)} \left\lvert\, \begin{array}{llllll}
\phi_{1}(x) & \phi_{2}(x) & \cdots & \phi_{n-2}(x) & u \\
\phi_{1}^{\prime}(x) & \phi_{2}^{\prime}(x) & \cdots & \phi_{n-2}^{\prime}(x) & u^{\prime} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right.\right] . . \\
& \equiv s_{2}(x) u^{(n-2)}+s_{3}(x) u^{(n-3)}+\cdots+s_{n}(x) u \text {. }
\end{aligned}
$$
\]

Let

$$
P=a(x) \frac{d^{2}}{d x^{2}}+b(x) \frac{d}{d x}+c(x)
$$

be so chosen that $P M=N$. Now

$$
\begin{aligned}
P M u & =a s_{2} u^{(n)}+\left[a\left(2 s_{2}^{\prime}+s_{3}\right)+b s_{2}\right] u^{(n-1)}+\cdots \\
N u & =u^{(n)}+q_{1} u^{(n-1)}+\cdots
\end{aligned}
$$

Comparing coefficients and noting that $\left(W s_{2}\right)^{\prime}+\left(W s_{3}\right)=0$, we see that $a^{\prime}(x)=b(x)$ and hence that $P=P^{+}$.

Lemma 2. Let

$$
L=p_{0}(x) \frac{d^{n}}{d x^{n}}+p_{1}(x) \frac{d^{n-1}}{d x^{n-1}}+\cdots+p_{n}(x)
$$

be a linear differential operator with $p_{i}(x) \in C^{n-i}, p_{0}(x)>0$ in some closed finite interval $[a, b]$. Then there is subinterval $\left[a^{\prime}, b^{\prime}\right]$ of $[a, b]$ such that L has a representation

$$
L=S Q
$$

where $Q=Q^{+}$is of second order.
Proof. Let $N=\left(1 / p_{0}(x)\right) L$. Then N is a linear differential operator with leading coefficient 1 . Hence N^{+}has leading coefficient 1. By Lemma 1, there exists a subinterval of $[a, b]$ such that

$$
N^{+}=Q R
$$

with $Q=Q^{+}$. Taking adjoints of the above equation:

$$
N=R^{+} Q^{+}=R^{+} Q
$$

Now

$$
L=p_{0}(x) N=p_{0}(x) R^{+} Q .
$$

Let $p_{0}(x) R^{+}=S$. Then $L=S Q$.
New York University

[^0]: Presented to the Society, December 29, 1950; received by the editors October 30, 1950.

