THE WEDDERBURN PRINCIPAL THEOREM
IN BANACH ALGEBRAS

CHESTER FELDMAN

The Principal Theorem of Wedderburn for a finite-dimensional alge-
bra A states that 4 is the vector space direct sum of its radical R
and an algebra isomorphic to A/R. It will be shown that the cor-
responding theorem is not true for all Banach algebras, but that
it is true with certain restrictions.

The terminology of Jacobson [3]' will be followed for radical,
quasi-inverse, and quasi-regular. The notations x O y =x+y+xy and
x' for the quasi-inverse of x will also be employed.

DeriNITION 1. A Banach algebra is a complete normed linear space
wlilicllll |1Is |.itlso an algebra over the complex numbers satisfying ||xy||
SHx| il

All the following results are proved for real algebras in [1] by the
same methods.

To show that the Wedderburn theorem does not hold for an arbi-
trary Banach algebra, consider the commutative algebra 4 which is
the completion of the algebra of all finite sums

n
D aiei + Br
tm=]
where a; and § are complex, e; are mutually orthogonal idempotents,
r2=0, e =re;=0, and

| 2 eies + Brl| = max {[2]e:l?]72, |8 = X el }.

It is easy to show this defines a norm, but it is also necessary to
verify that ||xy|| <||«|| ||3]|. Let x= X aiei+yr, y= D Biei+vr. Then
xy= 2 aiBies;||xy|| =max { [ 20| aiBs| 2]V, [ XoiBi| }. By the Cauchy
inequality,

| > | < ZI aiBi| £ [0 ] |22 [ | Ig',lz]uz.

Together with | @B 2= 20| .| 22| B:] 2 this shows ||| <||«]| ||5]]-
Hence A4 is a Banach algebra.

A/R is the algebra of all sequences » a;u; where uf=u;, a; are
complex, and || Yami|=[>|ei?]"2< . A/R contains the ele-
ment x= Y ., 1~lu; since _i~?=m2/6, but there is no element
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> i-le;in A, for Y 4! diverges. Therefore there is no subalgebra of
A isomorphic to A/R.

It can be shown [1] that the radical of 4 is one-dimensional. Thus
no restriction on the dimension of the radical will suffice. However
it will now be shown that it is sufficient for 4/R to be finite-dimen-
sional.

THEOREM 1. If A 4s a Banach algebra, R its radical, and A/R 1s
finite-dimensional, then there is a subalgebra S of A isomorphic and
homeomorphic to A/R. A 1is the vector space direct sum S+ R.

LemMA 1. If A is a Banach algebra, R its radical, and {u.} a de-
numerable set of pairwise orthogonal idempotents of A/R, then there
exist idempotents e; in A mapping on u; via A—A/R, and the e; are
patrwise orthogonal.

The proof is by induction. Let a; be an element of 4 mapping on
the class #;. Then a®—a; =7, in R by hypothesis. For any 7 in R there
exists (1+47)~12=1—2r+6r2—20r3+ - - - since ||7"||Y*—0 [2] guar-
antees convergence of this series. Define e;=(2a,—1) [2(144r)V/2]-1
4+1/2=a,(1=2r46r2— - - - )+ (r—3r24+10r*— - - - ). Then é=e
and e; maps on #; since a; does. Assume there exist €;, - - -, €, such
that e =e;, e;e;=0=eje; for 15j, and e;—u;, 1=1,2, - - -, t—1. De-
fine f= D iz} e.. Then f2=f, e;f =fe;. Let b; be any element such that
bi—u;. Definea;=(1—f)bs(1—f). Then e;a;=a.;=0, and a,—u, since
fb:—0, bf—0, and fb,f—0. Hence a—a,=r; in R and ex,=r.;=0,
i=1, 2, - - -, t—1. Define e,=(2a;—1)[2(1+4r)V2]-241/2. Then
ee=e, e;—u;, and ee;=e;e;=0 since e;a;=e;s;=0. This completes
Lemma 1.

LeEMMA 2. If A/R contains a ring direct sum Mi®M.® - - - M,
of total matric algebras M;, then A contains a ring direct sum of total
maltric algebras S;—M; via A—A/R.

Consider first a single matric algebra M CA /R, where M is generated
over the complexes by #;;, #i; are pairwise orthogonal idempotents,
=, and u;ur, =0 for k>j. Since there are a finite number of
u:;, by Lemma 1 A4 contains idempotents e;;—u;; with e;iej;=e€;;e::=0
for 1#j. Choose an element v;;—u;; and an element v;;—u,;. Since
wisttaty =ui and unuiu;;=1u1;, viq may be chosen in e Aen; vi; may
be chosen in CuAejj. Then VU512 UL U1 = Upl. Hence 01,1),'1=en+a,'
where a; is in RNendey. By [3], o] exists. (eu+aj)(enta;)
=en+ajen+enaj+aja;=ey since aj= ), (—ay)" is also in euden.
Define e;;=eqe;;. Then esje;r =€ and eien =0 for j#h. Clearly ey is
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in A and e;;—u;;. Thus A contains a total matric algebra (e;;) iso-
morphic to M. The sum of the algebras S; so constructed for each M;
is the ring direct sum since the basis elements are constructed from
mutually orthogonal idempotents. This completes Lemma 2.

PRrROOF OF THEOREM. 4 /R is the direct sum of a finite number of
finite-dimensional total matric algebras over the complex numbers.
Hence A contains a subalgebra S=2A4/R. Since the isomorphism
S—A /R is continuous, it is a homeomorphism. S is semi-simple; so
SNR =0. Therefore S+ R is a vector space direct sum.

When 4 /R is not finite-dimensional the theorem can still be proved
if R is finite-dimensional and A/R is a well known type of algebra
most generally defined in [4] as follows:

DEFINITION 2. The B(®) direct sum of a denumerable number of
algebras A, is the completion in a specified norm of the algebra of all
sequences {a;} such that a; in 4; are 0 for all but a finite number of 4.

THEOREM 2. If A is a Banach algebra, the radical R of A is finite-
dimensional, and A /R is the B( «) direct sum of finite-dimensional total
maltric algebras, then A is a vector space direct sum, A=B+C+D,
where B is finite-dimensional, BC=CB =0, every idempotent of C
mapping on an element in the basis of A/R 1s orthogonal to R, and
DCR. When A is commutative, D=0 and A 1s a ring direct sum of
B and C.

Let n be the dimension of R. Then there are at most # distinct
primitive orthogonal idempotents e; and # distinct primitive orthog-
onal idempotents e, of 4 for which ey, 540 and r.e,#0 for any 7; and
r, in R. Otherwise

n n
Cntifntl = D QuOkTk,  Tni1bai1 = D Palsbs
k=1 a=1
for complex a; and B,, since any n+1 elements of R are linearly de-
pendent. However,

ni1(€ns1?nt1) = €npifasy = D arburi€ati = 0,
(Pat1€nt1)enss = Tnp1€nsr = D, Baribetnir = 0.

Hence there are at most 2% primitive orthogonal idempotents e; for
which ¢;R5#0 or Re;#0.

Let {u:;} be a basis for the matric algebras of 4/R. Choose a fixed
set of e;; constructed as in Lemma 2 to map on #%,;, and number the
set so that e;=¢;;, j=1, - - -, s, are all idempotents of the set {e;j}
which are not orthogonal to the radical. Define e= 3., ¢;, B=ede,
C=(1—e)A(1—e¢),and D=eA(1—¢€)+(1—e)de. Then A=B+C+D
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is the usual two-sided Peirce decomposition of 4. Obviously BC
=CB=0.

If A is commutative, e(1—¢e) =0; so D=0. Therefore 4 is a ring
direct sum, A=B®C.

Note that if e;=e; is an idempotent of {e;;} which is orthogonal
to R and e; =ex is an idempotent of {e;;} which maps on %= u in
the same matric algebra as u;;, then ey is also orthogonal to R, since
by Lemma 2 there exist e;z and ex; such that exeiieq =ex. Then e R
=ek.-e,~.~e.~kR = 0, and Rekk =Rek.-e.~.-e.-k =0.

Let u be the image of ¢ under A—A4/R. Then u is the sum u=1I
+ - - - 41, where I, is the unit element of a matric algebra in 4/R.
Now D—-u(A/R)(1—u)+(1—u)(A/R)u. Since # commutes with
A/R, D—0. Therefore DCR. ede/R is finite-dimensional and R is
finite-dimensional. Therefore ede is finite-dimensional. All idem-
potents of {e.-j} not orthogonal to R are in B; so all idempotents of
{e:;} in C are orthogonal to R. This completes Theorem 2.

The Principal Theorem of Wedderburn is known for finite-dimen-
sional algebras, so B=S;+R;. If it can be proved that C=S,4R,,
then it is proved for 4; for S=S;+S: is a subalgebra, and it follows
from BC=CB=0 that 5;5:=35.5,=0, which implies S;+S.2~A4/R.

A C*-algebra is a Banach algebra with a conjugate linear involution
x—x* such that (xx*)’ exists for all x and ||xx*|| =||x||2. It is proved
in [4] that a completely continuous C*-algebra is the B() direct
sum of finite-dimensional total matric algebras.

THEOREM 3. If A/R is a completely continuous C*-algebra and R is
finite-dimensional, then A is a vector space direct sum, A =S+R, of R
and an algebra S isomorphic and homeomorphic to A/R.

Theorem 2 applies to give A =B+ C+D. The remark above im-
plies a continuous isomorphism between S; and B/R;. By the closed
graph theorem this is a homeomorphism; so it remains to prove the
theorem only for the algebra C in which every idempotent of the set
{e:;} is orthogonal to R. It will thus be assumed that all idempotents
in the set {e;;} are orthogonal to R.

LEMMA 3. All elements of {e:;} are orthogonal to R.

Since e;;=e;;e;;=e.;e;;, and it has been assumed that all idempotents
are orthogonal to R, it is clear that all e;; are.

LEMMA 4. ”6,’,’” =||u.~,~|| =1.

By [5, Theorem 10] and [4] the basis {u.;} may be chosen so that
%*
Uy = Ujs.
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wil]| = ||u2)] =||usd| =||u:d|2. Hence ||ui| =1.
wiud|| = ||wiil| 2 =||wijusil| =||usd| =1. Hence ||ui;|| = 1. By definition,
inf flew + rll = [lusll = 1.

Let # be the dimension of R. Then r7t1=0.
n+1

e+ 0™ = llei™ + @+ Debr + -« + 77|
n+l
= lleall = flewe + I
For any >0 there is an 7 in R for which ||esi+7||"<1+e. Hence
lles|| = 1. Since ||| <||esd|? [|esd| =1. Now

inf flea+ ol = fluall = 1,
inf flewy+ | = flwadll = 1,

€1 = (8£1 + f)eu,

llesll = lless + rllllewsl] = llea + 7],
e1; = en(erj + 7),
leill = llewlllles + 7l = [lew + 7|l.

This shows [|eq|| <1 and ||ey,]| 1. The mapping e;;—u.; depresses the
norm.

llecill = lleallllew] = 1.

Therefore ||e;;|| = 1.

ProOOF OF THEOREM. A /R is the B(«) direct sum of finite-dimen-
sional total matric algebras M. By Lemma 4, A contains a subalgebra
S; equivalent to M;. It will be shown that the map of any finite sum

t-1 Ni, N;in S;, into A/R is an isometry. Suppose N;—N; in M;,
and I; is the identity matrix of S;. Since A/R is a C*-algebra,
(LIH*=T,=1I, ||I|| =||T.7}| =]|T:|%; so ||T.|| = 1. Furthermore

ITo4 - + Tl = [ [T+ - -+ TDT*+ - - +I9],
It + Tl = [Tt + Tl = 1.
Define I=I+ - -+ +1I. Then

inf = ||T|| = 1.
int [17+7] = 7]

1@+ nymall = 2] < (17 + o[

Hence ||I]| =1, and similarly



776 CHESTER FELDMAN [October

i}i:lzv.--“ - I= 7,

IO N:+17) =2 N,
| Z Ml = I Z N+ o)l = | 22 N+ 1],
|12~ < | 2 7.

Since the mapping 4—A/R depresses norms,

12w = | 7.

This shows that the mapping of any finite sum » i, N;into A/R is
an isometry. Let S be the B() direct sum of the subalgebras S; of
A. Since A is complete, SCA. A dense subset of S maps isometrically
and isomorphically onto a dense subset of 4/R; therefore S is iso-
morphic and isometric to A/R. This proves Theorem 3.

The theorem will now be proved for an algebra in which the map-
ping A—A /R depresses the norm as little as possible.

DEFINITION 3. An /; algebra is the commutative Banach algebra
of all sums Ea;u,-, where a; are complex, #; are a denumerable num-
ber of primitive orthogonal idempotents, and || > aind| = 25 et <.

inf
rER

THEOREM 4. If A/R is an I, algebra and R is finite-dimensional, then
A =S+R where S is a subalgebra of A isomorphic and homeomorphic
to A/R.

As in Theorem 3 it is sufficient to consider an algebra 4 in which
each idempotent e; is orthogonal to R.

There exist pairwise orthogonal idempotents e;—u; by Lemma 1.
The proof of Lemma 4 shows ||ed| =1. For any x= > aie; in 4,
[l || Zevied| = Xl el leal] = 2] =] Eesaud|. Now x— 3 evins,
and the mapping A—A/R decreases norms. Hence ||x||= 2_|al,
that is, the mapping is an isometry on the completion .S of the sub-
algebra of A generated by the e;. Therefore S is isometric and iso-
morphic to A/R and A =S+R. This completes the proof.

In all the previous theorems the completion of the algebra gen-
erated by elements mapping on basis elements of 4/R is disjoint
from the radical. The following theorem shows this property is the
essential one.

THEOREM 5. Suppose A is a Banach algebra, that the radical R 1s
finite-dimensional, that A /R 1is the B( ) sum of finite-dimensional total
matric algebras, that S is the B(®) sum in A of the matric algebras iso-
morphic to those of A/R, and that SNR =0. Then S is isomorphic and
homeomorphic to A/R, and A is the vector space direct sum S+R.
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S is complete and R is complete since the radical of a Banach alge-
bra is closed. R is finite-dimensional so S+ R is complete. Also
(S+R)/R is complete; hence A—A/R maps S+R onto A/R. SNR
=0 implies (S+R)/R=3S. Therefore S=A4/R. The mapping S—A/R
is 1-1 and continuous. By the closed graph theorem, S is homeo-
morphic to A/R. Suppose @ in 4 maps on [a] in 4/R. Then there is
an s in S which maps on [a]. Thus a—s=r in R. Every a=s+r.
Since S is semi-simple, 4 =S+R.
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