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The object of this note is to study the critical points of a real

rational function piz) of degree — 2m (>0) with — 2m poles in the

closed interior of the unit circle C: \z\ =1, with a real zero of multi-

plicity k (>0) in the point Xi interior to C, and with a zero of multi-

plicity — 2m — k (>0) at infinity. The corresponding problems for the

case | Xi\ > 1, and for the case that piz) is of degree k with infinity no

longer a zero but a pole of piz) of multiplicity k + 2m (>0) with no

restrictions on \xi\, have already been treated elsewhere;1 we retain

the notation and terminology of that previous treatment.

We shall prove

Lemma 5. Let C: \z\ =1 be the unit circle, let X (>1) be constant,

and let A: z = Xi be a real point interior to C. If P is a variable nonreal

point, we denote by Q the intersection other than P of the line AP

with the circle through — 1, +1, and P. Then the locus of points

P: ix, y) such that we have QP/AP=\ consists of the nonreal points of

the circle

(9) (X - 1) [(* - xif + y] + x\ - 1 - 0.

If P is the point (x, y), then the circle through — 1, +1, and P is

(10) X2 + [Y - ix2 + y2 - \)/2y]2 = 1 + ix2 + y2 - l)2/4;y2,

where the running coordinates are X and Y. The point Q has the

coordinates (Xxi-f-x — Xx, y— Xy), and a necessary and sufficient con-

dition that Q lie on the circle (10) is precisely (9). Equation (9) repre-

sents a proper circle.

Lemma 6. Let C: \z\ =1 be the unit circle, and A : z = xi a real point

interior to C. If the point P : (x, y) lies exterior to the circle (9), then for

every point Q' collinear with A and P, separated by A from P, and lying

interior to the circle (10), we have Q'P/AP<\.

It is to be noted that A is the center of the circle (9). When P

moves on AP monotonically away from A, the point Q of Lemma 5

moves monotonically toward A. Consequently the ratio QA/AP
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1 J. L. Walsh, The location of critical points, Amer. Math. Soc. Colloquium Pub-

lications, vol. 34, §5.8.3. All references in the present note are to that book.
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= QP/AP— 1 decreases monotonically, and Lemma 6 follows.

We are now in a position to establish our main result:

Theorem 8. Let p(z) be a rational function of degree —2m all of

whose poles lie in the closed interior of the unit circle C, which has a zero

of multiplicity k ( > 0) in the real point Xi interior to C, and which has a

zero of multiplicity — 2m — k ( > 0) at infinity. Then all nonreal finite

critical points of p(z) exterior to C lie in the closed interior of the circle

(11) (k + 2m) [(x - xi)' + y] + k(l - x\) = 0.

Let P be a nonreal critical point of p(z) exterior to C, hence a posi-

tion of equilibrium in the usual field of force. The particles at the poles

of p(z) total 2m in mass, are symmetric in the axis of reals, and lie in

the closed interior of C; hence, by the method of proof of Lemma 2,

the force these particles exert at P is equal to the force exerted at P

by a single particle of mass 2m located at some point Q' of R (nota-

tion of Lemma 2). Then P is a position of equilibrium in the field due

to this particle at Q', and to a particle of mass k in the point A:z = Xi.

Consequently Q' lies in Ro (notation of Lemma 2), P is collinear with

A and Q', and we have Q'P/AP= —2m/k. It follows from Lemma 6

with X= —2m/k that P lies on or within the circle (11). Theorem 8

is established.

From a general result on circular regions (§4.2.4, Theorem 4), it

follows that under the hypothesis of Theorem 8 all real critical points of

p(z) lie in the interval S:

(- 2mxi - k)/(- 2m - k) £ s £ (- 2w*i + k)/(- 2m - k).

In order to study the actual locus of critical points in Theorem 8,

we consider a somewhat more general situation:

Theorem 9. Let a region R symmetric in the axis of reals be the

locus of q (>4) poles of a real rational function p(z). Then each point

of R belongs to the locus of critical points of p(z).

As in the proof of §4.2.2, Theorem 1, we find it convenient to con-

sider R(z) = l/p(z), and shall prove that each (interior) point of R

can be a critical point not a multiple zero of R(z). This conclusion is

valid for a real point «o of R, for let «o lie interior to R on the axis of

reals; precisely the method of §4.2.2 then shows that ao can be a

critical point not a multiple zero of R(z).

Let now ao be a nonreal point of R; we set

R(z) m (z - a0)(z - äo)(z - a)(z - &)Ri(z),
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where a is allowed to vary in the neighborhood of the fixed point «o,

but where the zeros and poles of Ri(z) are fixed and remote from «0.

The critical points of R(z) are the zeros of R'(z) = (z — âo)(z —a)

■iz—ä)Riiz) + (z— a0)(z — a)(z— ä)Ri(z) + (z— a0)(z — ä0)(z — ä)Ri(z)

+ (z — a0)(z— äo)(z — a)Ri(z) + (z — ao)(z— äo)(z — a)(z— ä)R{ (z) =0.

This equation defines z as an implicit function of a, and the equation

is satisfied for z = a = «o- Even though z is not an analytic function of

a, we have by differentiation for the values z = a = «o

dR'(z)
-= 2(a0 — a0)2Ri(a<>),

dz

dR'(z)
—T- - - (a» - 5o)2*i(«o).

da

We interpret R'(z) =0as two real equations in four real variables, the

real and pure imaginary parts of z and a; the jacobian for the values

z = a=a0 has a value which is different from zero. It follows from the

implicit function theorem for real variables that the equation R'(z) =0

defines z as a function of a, and when a varies throughout a neighbor-

hood of ao then z also varies throughout a neighborhood of a0; it is

readily shown also from the proof of the implicit function theorem

based on successive approximations that if a0 is now allowed to

vary over a small neighborhood, then a neighborhood of «o of fixed

size as a locus of a corresponds to a neighborhood of a0 as a locus

of z which contains uniformly a circle of constant positive radius

whose center is the variable a0. The proof of Theorem 9 can now

be completed as was the proof of §4.2.2, Theorem 1.

We return now to Theorem 8. If we replace the problem represented

by Theorem 8 by the more general problem of finding the critical

points of a function of the form (0<k<—2m)

p(z) = (z — Xi)h/(z - ai)mi(z - äi)"'i(z - a2)^(z - a2)mi

(12)
• • • (z- an)m"(z- «„)-»»,

where we have |xi| <1, |«y| i£l, wy>0, mi+m2+ ■ ■ ■ +«„= —m,

and where k, m, xi are given but k, mi, m2, ■ ■ ■ , mn, m need no longer

be integral, then the interior of C plus the closed interior of (11) plus S

plus the point at infinity is the precise locus of critical points of p (z). Any

point z interior to C can be a critical point of p(z), as follows from

Theorem 9. Any point of 5 can be a critical point of p(z); compare

§4.2.4, Theorem 4. Any nonreal point P in the closed interior of (9)

not interior to C can be a critical point of p(z), for if P is given there
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exists a point Q' on the line PA extended, which is contained in the

closed region i?0 (notation of Lemma 2) and with Q'P/AP= —2m/k;

it follows from the proof of Lemma 2 that a suitable choice of nega-

tive particles in C of total mass 2m is equivalent (so far as concerns the

force at P) to a (2»z)-fold negative particle at Q'; thus P is a critical

point of a suitably chosen p(z) of type (12). Every real point interior

to (11) lies in C or 5, and the conclusion of Theorem 8 persists, so

the locus of critical points of (12) is as stated.

Under the original conditions of Theorem 8, with Xi given, every

real point interior to C belongs to the locus of critical points if we

have —m = l, and every point interior to C belongs to the locus if

we have —m>l.

If the hypothesis of Theorem 8 is modified slightly, the conclusion

requires large modification :

Theorem 10. Let p(z) be a rational function of form (12) where we

have \xi\ <1, |a,-| ¡gl, ?wy>0, mi + m2+ • • ■ +m„= —m, and where

m, Xi are given, but k, m\, m2, • • • , m„, m need not be integral. Then

the locus of critical points of p(z) for all possible choices of k, mi, m2, • • -,

mn, a„ consists of the extended plane.

The proof of Theorem 10 is similar to the previous proof of the

locus property of (12), and is left to the reader.
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