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Introduction. Division of the set of all groups into families provides

' a convenient method of classifying groups [l].1 We show that there

is a natural one-one correspondence between the set of all families of

groups of class 2, plus the family of all Abelian groups, and the set

of all families of "regular bilinear mappings."

In the second section, products of families are defined and it is

shown that the family of any finite group of class 2 may be expressed

uniquely as a product of indecomposable mappings.

1. Regular bilinear mappings and groups of class 2. In this paper,

H and K will always be Abelian groups. We say that / is a regular

bilinear mapping of II into K, written

(i) fEmn,K),

if, to every ordered pair (x, y), x and y in H, there is defined a unique

f(x, y) in K and, for all x, x', y, y' in H,

(2) f(xx', y) = f(x, y)f(x', y),

(3) f(x, yy') = /(*, y)f(x, y'),

(4) f(x, x) = e (e is always the group identity),

(5) if, for all y, f(x, y) = e, then x = e,

(6) K-{f(x,y)}.

It is easy to show that these conditions imply that H and K are

Abelian.
G, Z, and Q will always stand for a group, its centre, and its com-

mutator subgroup respectively and we shall further assume that G

is either Abelian or of class 2, that is

(7) QCZ.

If we define/by

(8) f(Zx, Zy) = [x, y] = xr^y^xy,

it is easy to show that fEW(G/Z, Q). We write f=M(G).
We say that/and/' in m(H, K) and <m(H', K'), respectively, be-
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long to the same family, denoted by/~/', if and only if there exist

isomorphisms <p and yp of II into H' and K into K' respectively and

such that, for all x and y in H,

(9) f'(<bx, <j>y) = tf(x, y).

The condition [l] that G and G' belong to the same family, de-

noted by G~G', is precisely that

(10) / = M(G) ~f - M (G').

If g = F(f) and ® = F(G) denote the families to which / and G re-
spectively belong and we define Af(@) by

(11) ilf (©) = F(M(G)), for any G in ®,

we then have the following theorem.

Theorem 1. The correspondence &—->M(®) is one-one between the

set of all families of groups of class 2, plus the family of all Abelian

groups, and the set of all families of regular bilinear mappings.

This follows at once from the above definitions and Theorem 2.

The following proof of Theorem 2 is due to Professor Saunders

MacLane and replaces a much longer proof2 based on construction

using a special basis.

Theorem 2. For any fin ^(H, K), there exists G such thatf~M(G)

and Z = Q.

The group G required consists of all ordered pairs (x, A) with x in

H and A in K and multiplication is defined by

(12) (x, A)(y, k) = (xy, hkg(x, y)),

where g(x, y) satisfies the following conditions:

(13) g(x, y) = f(x, y)g(y, x),

(14) g(x, y)g(xy, 2) = g(y, z)g(x, yz),

(15) g(e, e) = e.

A factor set g may be found by transfinite induction by the fol-

lowing lemma.

Lemma 1. If R<S^Hand S/R is cyclic and h(x, y) is defined in R
and satisfies (13), (14), and (15), then we can find g(x, y) defined in S,

satisfying (13), (14), and

Given in an earlier version of this paper.
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(16) g(x, y) = h(x, y), for ail x, y in R.

Let Rz generate S/R; if S/R has finite order «, zn=aER, we define

g(x, y), x = x'z\ y=y'z', x', y' in R, 0 = ¿, j<n, by

(17) g(x, y) = h(x', y')f(z\ y'), if i + j < n,

and by

(18) g(x, y) = h(x', /)/(*', /)*(*y, «),       iii + jkn.

If 5/i? has infinite order, we define g(x, y) by (17) for all i, j.

It is not difficult to verify that g (x, y) has the required properties,

(14) has six cases to be considered, when w is finite.

2. Direct products of multi-linear mappings and groups. We say

that/ is a regular multi-linear mapping on H, K, • • • , to L, denoted

by /GSDî (H, K, ■ • • ; L), where H, K, • • • is a set of « groups
(2^«<»), if, to every x in H, y in K, • • • , there is defined

f(x, y, • • • ) in L such that

(1) f(xx', y, • • • ) = f(x, y, • • • )f(x', y, • • • ). and so forth,

(2) if /(x, y, • • • ) = e for ail y, • • • , then x = e, and so forth,

(3) ¿= {/U y, •••)}•

We shall always used x, y to stand for elements of H, K and extend the

convention to groups distinguished by suffixes.

It easily follows that H, K, • • • are Abelian and, for « = 2, L also.

We say that/ is the direct product of/,- (iEI) or

(4) f = IT /.-,      /i G 9K(ff» ifc • • • ; Li),
iEi

if

(5) H =JlHi,   K = II Ki, ■ ■ • . L = II £<        (direct products)
.£/ «G/ <£/

and

(6) f(xu yp, • • • ) = fi(xu yt, • ' •), if i = p = • • • , and e otherwise.

It is easy to obtain the following result.

Lemma 2. If f=M(G), fi = M(d) (iEI), then G~n<er d if and
onlyiff~JJieifi.

We now come to the main result on products of mappings.

Theorem 3. If fEW(H, K, ■ ■ ■ ; L),/= ILerU fiGWKHi, K{,
■ ■ ■ ; Li), and also /= He/ //, // ODl(¿í/, £/,•••;£/) Me»
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/= TLiET.jEjfui fij&$R(Hlj> Ky, ' ' • '<E¡¡), H[] = Hi(~\Hj, • - • , L"¡
= LiC\L'j.

By (5), x= IJiGr x¿, x< = i7,x, where i;< is a homomorphism on H

to Hi. We have similarly

y = Il nyi anci so forth,
«Er

x = YL xj,       Xj — 6jX, and so forth.

We now have

(7) x =    II   xa, xa = 6¡riiX E HÜ = e¡Hi.
íEi,,Ej

Lemma 3. /(»</, yP«, • • • )=e w»/es5 i—p= • • • andj = q— • • • .

By (6), applied to the/' product, the second equation follows at

once. If the first equation is false, let x,7=0¿x<, and so forth. Then from

(1), (5), and (6)

/(**• yP,-'-) = n/(0**it Qkyi» ••')"«,
kEj

so that fi6kXi, 6kyP, • • -)=e, for all A in /, in particular j, so that

fixij, ypj, • • 0 =e as required.

We now show that the expression (7) of x as a product of x,y is

unique.

Suppose then that e= Ili€/./G/*iyi XijEHy. We then have

(8) fixa, yPt, •••)-«

for all i, p, • • • in I, j, q, • • • in J, all ypq in Kp9, and so forth, since

(8) holds at once,  by Lemma 3,  unless both i=p= • : • and j

= q= • • • , while in this case, by (1),

« = /(«t ypv • • • ) -     II     f(xim, yPq, • • ') = f(xij, ypq, • • •),
lEl.mEj

as, by Lemma 3, f(x[m, ypq, • • • )=e, unless l = i and m=j.

Then, by (1), (7), and (8),

(9) /(««if y> • ' ' ) m «i for all y in AT and so forth,

so that by (2), we have Xi¡ = e, and H is the direct product

(io) h= n #."•
iG/,;'S/
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We now show that H',j = Hir\H'j. First,

(H) va - 9iXi E Bj.

Let

(12) xa = II x'p,       x'p C B„
pEi

then

(13) xa = OjXij = II 0,Xp,       Ö/Xp G #¿í,
p6r

(14) e = BkXij = Il OkXp,       6kx'p E Bp\, k ^ j.
pEi

By (10), we have

(15) 6qxp = xa, if p = i and q = /, and e otherwise,

so that,

(16) xu = x'i E Bit

as required. Conversely, if xEHií\H¡,

(17) x = 6jT,iX E B"j.

We thus have

(18) #,"=#,• Hfl,'.

By Lemma 3, (1), (3), (10), (5), and (18) the proof of Theorem 3

is easily completed.

We can define products of families of «-linear mappings by

(19) s = n& = ̂ (n/.\   %i=F(fi),
iGl \iGi   /

and, similarly, products of families of groups of class 2 or 1, by

© = II @« if G ~ II Gi, for G in © and G< in ©,-.

The products are clearly independent of the particular elements by

which they are defined. A family is indecomposable if it cannot be

expressed as a product of nontrivial factors. We easily obtain from

the above results the following theorem.

Theorem 4. If g= ]JiEl g,= £[/£/ $,'. then g= ILez./e/8i/',
where ft- ILe/8« and 8/ = ILe/S«-
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Further v? can, apart from trivial (unit) factors, be expressed in at

most one way as a product of indecomposable factors. The same re-

sults hold for families of regular bilinear mappings (n = 2, H = K,

Hi = Ki) and for families of groups of class 1 or 2. If either Q or G/Z

be finite, F(G) is uniquely expressible as a product of indecomposable

families.

Reference

1. P. Hall, Classification of prime power groups, Journal für Mathematik (1940).

University College, Leicester

A SHORT PROOF OF AN IDENTITY OF EULER

DANIEL SHANKS

Euler discovered the identity

00 00

(i)    n (i - x«) = i + e (-lWx'«'-1»2+«•»•+i>/»].
>-i >-i

He used it in the theory of partitions, and, after some time, he proved

it [l].1 Later, famous proofs involving theta functions and combina-

torial arguments were given by Jacobi and F. Franklin [2]. The fol-

lowing algebraic proof is quite simple.

Let the partial products and partial sums of (1) be

p» -1,   p. = n a - *o,

and

Sn - 1 + E (-lH*'"-1"2 + *•«»«>'*•.

Then Sn and Pn are related by the finite identity

n p

(2) Sn = Fn where Fn - E (-1)' — x'n+'W2.
«-o P»

To prove (2) we detach the last term, s = n, and split the remaining

sum into two parts by putting Pn=Pn-i—xnPn-i- This gives
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