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1. Introduction. The object of this paper is to determine restric-

tions on the coefficients a„ of a Taylor series which, when taken to-

gether with the fact that the complex variable z lies in certain regions

of the complex plane, will imply that the values of the partial sums

Sn(z)=aa+aiZ+ - - - +anzn, « = 0, 1, 2, • • • , of a Taylor series

will be numbers lying in a predetermined region V of the complex

plane. If the region V does not contain the origin, we then have some

information about the zero free regions of polynomials and other

classes of functions. The method that is employed is an adaptation of

a technique developed principally by Leigh ton and Thron [3]1 in

the study of convergence criteria for continued fractions.

2. Two lemmas. We employ the same notation and terminology

here as in [l]. If S is a set of complex numbers and a is a fixed com-

plex number, we shall designate by a + S and S+a the set obtained

from the set S by adding to each element of 5 the number a. By aS

we understand the set obtained from 5 by multiplying each element of

S by the number a. By the notation Z)[aS] is understood the point

set intersection of all sets aS as a assumes all values in a given set A.

Lemma 2. 1. Let E, V, and Z be any three sets of complex numbers

with the following properties :

(a) l+EEV;
(b) 1+avEV, ifaEEandvEV.

Let ön^O, w = 0, 1, 2, • • • . // the quantities anañlizEE for all zEZ

and each n = l, 2, - - - , the values of the partial sums Sn(z) =a0+aiz

+ • • ■ +anzn, n — l, 2, ■ • • , of a Taylor series are numbers which

are contained in ao V.

Proof. We note that

Sn(z) = a0 + aiz+ • • • + anz"

(        ai     (        a2     ( ßn-i     ( an     ) )

= a0\l + — z\l + — z\-z\l +-z\ ■•■}.
(.        a0     \        ai     (        an-t     I        an-i   ) )

Now l+ana'l^EV for zEZ and « = 1, 2, ••• • by (a) and hence

l+an-ia~l2z{ l+anañliz} EV by (b). A simple induction argument
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then proves that Sn(z)EaoV, « = 1, 2, • • • , for zEZ.

Lemma 2.2. Let V and Z be any sets of complex numbers such that

the set E — D[v~l(V— 1)], vEV, is not empty, and has the property

that l+EC^- // the quantities anañ-izEE for zEZ and each n

= 1, 2, • • ■ , the values of the partial sums Sn(z) =ao+axz+ ■ • •

+a„zn, n = \, 2, • • • , of a Taylor series are numbers which are con-

tained in aoV.

Proof. To prove the lemma it is sufficient to show that the condi-

tion (b) of Lemma 2.1 is satisfied. Let a be any point belonging to £

and v any point of V; then the definition of £ insures the existence

of a point z/GFsuch that a — v~l(v'— 1), that is, v' = l+avE V and

condition (b) of Lemma 2.1 is satisfied. As an immediate consequence

of Lemma 2.2 we have the following corollary.

Corollary 2.1. Let V and Z be any two sets of complex numbers such

that the set £ — D [v~1( V— 1) ], vE V, is not empty and 1 is contained in

V. Then the conclusion of Lemma 2.2 holds including the case n = 0.

3. Applications. We shall now prove three theorems which illus-

trate the use of this method. From the nature of the technique to be

used it seems that the greatest difficulty one encounters is in the

actual problem of trying to obtain an expression for the boundary of

£.

Let us choose first for the set V of Lemma 2.2 the region

2-(1-/0/2 ^(l+p)/2, 0<p£l. Then V-l becomes the region

2+(1-HO/2 &(l+p)/2. If vEV, then v~l is contained in the

circular region \z—(p—V)/2p\ ^(p + i)/2p and we are interested in

determining E = D[v~l(V— 1)]. However this is really the problem

considered in [l, p. 354] but with different constants involved. Thus a

straightforward application of the method involved in [l] reveals that

E = D[v~1(V— 1)] is the set of points z = reie for which

(3.1)      r ^ [(p2 - l)/2p] cos 6 + (p + l)2/2p,      0 < p g 1 (fixed).

It may be of interest to note that £ is the set of points common to a

family of circles having their centers on the circle \z—(p2 — l)4p\

^(p + i)2/4p and passing through the origin. The envelope of this

family of circles is the curve determined by (3.1). Although this

does not prove that (3.1) is the boundary of £, it provides a motiva-

tion for considering this expression and then showing by direct meth-

ods as in [l] that it actually is the boundary of £. This completes

the proof of the following theorem.

Theorem 3.1. If for some 0</>gl the quantities anañliZ are con-
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tained in the region r^ [(p2-l)/2p]cos 6+(p+l)2/2p, O<0 = 2tt, for

all z in some set Z and each « = 1,2, ■ • -, then the values of the partial

sums Sn(z) =a0+aiz+ ■ ■ ■ +anzn, « = 0, 1, 2, ■ • • , are contained in

the region \ Sn(z) — (1 —p)/2 | è (1 +p)/2 multiplied by ao.

The following corollaries are immediate consequences of the

theorem just proved.

Corollary 3.1. Let z = rew. If 1 á o»añ-i for each « = 1, 2, • • • , and

r^[(p2-l)/2p] cos 6+(p+iy/2p, 0<6è2ir, for fixed 0<p^l,
then the conclusion of Theorem 3.1 holds.

If now we set p = 1 in Theorem 3.1 we have the following corollary.

Corollary 3.11. The polynomial a0+aiz+ - - ■ +a„z", ao^O, has

all its roots interior to the circle \z\ =2 max [|ao/ai|, ■ • • , \an-i/a„\ ].

Actually \Sk(z)\ = |ao| ,for k = 0, 1, 2, • • •, w,i» \z\ =2 max [|a0/ai|,

• • • i |an-i/«n| ]•

This last result, however, is not quite so strong as that found in [2,

p. 18]. Of course Theorem 3.1 itself can be interpreted as a result

about the zeros of polynomials.

We choose next for the set V of Lemma 2.2 the region common to

the regions Re (z)^p, 0<p^l, and |z-l| ^R, R>1. Then 7-1

becomes the region common to Re (z)^p — l, Q<p^l, and \z\ ^R.

If vE V, then v~l is contained in the region V~l common to \z—l/2p\

^l/p and | 2-1/(1 -R2)| ^R/(R2-l). Now we wish to determine

E = E(p, R)=D(v-\V-l)], vEV. To this end we show first that

D[v~l(V— I)] =D[v~[1(V— 1)] where nj"1 lies on the arc C of a circle

| 2+1/(22*-1)| =R/(R2-l), | Arg z\ =Arc Cos p/(R+2p-iy2. If
we choose a v~1EV~1, a vi1 on the arc C can be found with the

property that Iff1! 5=|ö-1| and Arg ff' = Arg î)-1. Thus since 0 G 7—1,

the set 1(^(7—1) is contained in the set f_1(7—1) and hence

D[vi1(V-l)]=D[v-*(V-l)].

Now we note that E(p, R) may be obtained by considering it as the

set common to the result obtained in case (a) 7—1 is the region

Re (z)^p-l and (b) 7-1 is the region \z\ £R.
Let us consider case (b) first. In this case a simple inspection shows

that Eb = Eb(R) is the set obtained by multiplying the region \z\ =i?

by the complex number of minimum modulus on the arc C. Thus

Eb is the region | z\ ^R/(R + l). Now in case (a) a simple calculation

reveals that Ea = Ea(p, R) is the intersection of a family of right

half-planes each of which is tangent to the arc C of a circle

| 2 + (1 - p)/(R2 - 1) | g R(l - p)/(R2 - I),
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| Arg 2 - ir | g Arc Cos p/(R + 2p - l)1'2.

Thus Ea = Ea(p, R) =D[vï 1(V— 1)] in this case consists of the arc C

plus the two right half-lines extending to infinity which are tangent

to the circle C at the end points of the arc indicated above. The inter-

section of the regions obtained in cases (a) and (b) is then our region

E = E(p, R), that is, E(p, R)=Eh(R)C\Ea(p, R). We then have the
following theorem.

Theorem 3.2. If for some 0<p^\ and some R>\ the quantities

ana~lizEE(p, R) for all z contained in some set Z and each n = \,2, ■ • •,

then the values of the partial sums Sn(z)=ao+aiZ+ ■ • ■ +anzn,

n = 0, 1, • • • , lie in the region common to Re (2) ^ p and \ z — 11 ^ R

multiplied by ao.

If now 0<anG»-ia 1 (in this case the radius of convergence of the

corresponding Taylor series is not less than 1) we have the following

corollary.

Corollary 3.2. 7/0<a„añ-i^l, « = 1, 2, • • • , andzEE(p,R),the
conclusion of Theorem 3.2 holds.

This last corollary may of course be given the following interpreta-

tion : namely, if 0<akaklx g 1 for A = l, 2, ■ • • , n, then the polynomial

ao+aiz+ ■ ■ ■ +anzn does not vanish for zEE(p, R) for any 0 <p ^ 1

and any F>1.

Finally we choose for the set V of Lemma 2.2 the region | z — k/2 \

gk/2, k>l. V-l is then the circular region |z-(A/2-l)| ^k/2.

We show first that the region E(k) =D[v~1(V— 1)], where vï1 ranges

over Re (z)^l/A, is equal to the region D[vï 1(V— 1)], where of1

ranges over Re (z) =\/k. In order to do this it is sufficient to show

that for any set »_1(F—1) a set vïx(V— 1) contained in v~l(V— 1)

can be found where v±l is a point on Re (z) = \/k. We can find such a

number by taking the number lying on Re (z) = l/k and satisfying

the condition Arg vï1 = Arg v~l.

The set V— 1 is subjected to the same rotation by multiplication

by v~l as by z^1 and, since 0Ev~1(V— 1), the stretching effected by

¡z/-1! eK-1| insures that the set v-^V-^Dvî^V-l).

Consider the circular region \z—(k/2 — \)\ £k/2. If we now make

the linear transformation w = az where Re (a) = \/k, this circular

region becomes the new circular region \z — a(k/2 —1)| á(A/2)\a\ or,

noting that a = (l/k) sec 6eie, this becomes

,„ „. sec 6      / k        \ I      sec 6 r r
(3.2) z-e»(-1)   =-,-^0^ —

k        \2        /I        2 2  "        "  2
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The set E(k) =D[v~1(V— 1)] is then the common set to all the

circles (3.2) as 6 varies over the range —7r/2 =Ôgir. We now proceed

to determine the envelope of the family of circles (3.2) and then show

directly that this envelope is the boundary of the region E(k). For

fixed k>l, (3.2) then represents a family of circles with centers on

the line Re (2) = (1/2) — (l/k), each circle passing through a point on

the line Re (2) = 1 — l/k having the same argument as the center of

the circle.

Upon setting z = x+iy in (3.2) we see that we are looking for the

envelope of the family of circles (k fixed and greater than 1)

(33) (-(7-t))'+ ('-(7-ih"•)= T'
- ir/2 g Í I ir/2.

Differentiation with respect to 6 leads to

k(k - 2)
(3.4) tan0 = —-y.

2(1 - k) '

Upon eliminating 6 between the equations (3.3) and (3.4) we obtain

for the equation of the envelope (k > 1 and fixed)

/        k - 2\2 k2 1
(3.5) (x-) +-y2 = — •

\ 2k  )     i(k - 1) 4

For each k>l, (3.5) is the equation of an ellipse with major axis of

unit length having the ends of its minor axis on the circle x2+y2 = 1/2.

Now in order to prove that (3.5) is the equation of the boundary

of E(k) (k>l and fixed) we shall show that if p(x, y) is a point con-

tained in the ellipse, then it will be contained in all the circles of the

family (3.3). This will be sufficient, for clearly if p(x, y) is outside

the ellipse (3.5), it is outside at least one of the circles of the family

(3.3). Thus we wish to show that

/        k-2\2 k2 1 ,
(3.6) (x-)+-y2 g — (*>1)

V 2k  )      A(k- 1) 4

implies

(3-7) ('-(t-tÏÏ+Mt-t)'"')'
sec*

<-
4

0 < 0 è 2r.

If now we add (y — (1/2 — l/k) tan 0)* to both members of (3.6),
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(3.8)
(--^^-(t-tW

ú— + (y-(-J tan 6 )-y2.
4      V     V 2        A / /      4(A - 1) '

Thus in order to show that (3.6) implies (3.7) it will clearly be suffi-

cient to show that

(k - 2)2        /l       1\ /l       1\
(3.9)-—-21-)tanÔy + (-) tan2 0 á 0

4(A-1)        \2       k)        '     \k2      k)

for each A>1 and each O<0^2ir. But the left member of (3.9) may

be written as -(A-2)2/4(A-l) (y+(2(k-l)/k(k-2)) tan 6)2g,0
for each O<0^27r and each A>1. This completes the proof that the

boundary of £(&) is given by (3.5) for each A>1. Thus we have the

following theorem.

Theorem 3.3. Let S„(z)=a<,+aiz+ • ■ ■ +anzn, n = 0, 1, 2, • • • ,

where z = x+iy. If for some k> 1, anañlizEE(k) for all z contained in

some set Z and each w = 0, 1, 2, • • -, where E(k) is the set of points

interior to or on the boundary of the ellipse

[x - (k - 2)/2A]2 + [A2/4(A - l)]y2 = 1/4,

then \Sn(z)—a0k/2\ ^\ao\k/2, for all zEZ and each n = 0, 1, 2, • • • .

The following corollary is an immediate consequence of the above

theorem.

Corollary 3.3. If zEE(k) for some k>\ and if 0<ona~_11al,/or

each « = 0, 1, 2, •••, then the values of the partial sums Sn(z)=ao

+012+ • • ■ +anzn, n = 0, 1, 2, • ■ -, are contained in the half-plane

Re(Sn(z))^0.

4. Conclusions. It seems clear that a large number of results of

the nature of the above theorems could be obtained ; however, we feel

that the ones presented are sufficiently representative of the general

situation. While the above lemmas and theorems are concerned only

with Taylor series, it seems probable that similar results could be ob-

tained for the general infinite series «o(2)+Wi(x)+ • • -+un(z)

+ • • • . This remark is based on the observation that we may write

S„(z) = «0(2) + «1(2) + • • • + m»(z)

= Mo(2){l + ^jl + ^{...^{l + ^l...l.
{       «0(2) I       «1(2) \       un-i(z) (       w„_i(z)       )
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NORMS OF MATRIX TYPE FOR THE SPACES OF
CONVERGENT AND BOUNDED SEQUENCES

ALBERT WILANSKY

Let, as usual, x = {x„} E (c) mean that x is a convergent sequence.

We write |[x|| =||x||a = sup»| Et-i ^nkXk\ =supn |i4„(x)|, where A

= (ank) is a matrix of complex numbers. By the ordinary norm of x

we shall understand |x| =sup„ |x„|.

Problem 1. What conditions on A are necessary and sufficient that

(c) be a Banach space with this norm?

The first result is that ||x|| < co for all x£(c) if and only if ||j4||

= sup„ E*°-i \o-nk\ < °° (essentially due to Toeplitz, 1911), and this

is true if and only if ||x|| < » for all xE(m), the space of bounded

sequences.

We shall assume that A is normal, that is, that ank = 0 for k>n,

while ann^O. (A remark on reversibility will be appended.) Finally,

let (A) be the class of sequences x such that Ax= {^4„(x)} is con-

vergent.

Theorem 1. Let A be normal, \\A\\ < », then for (c) to be a Banach

space it is sufficient that ||^4-1|| < ». The metric will then be equivalent

to the ordinary metric. The condition is not necessary (even if A is

conservative).

(A conservative matrix—one with (A)3(c)—must satisfy |J^4¡j

< », but not conversely.)

Assume that A satisfies the hypotheses. For xE(A), y=Ax, we

deduce that |x„| ^||.<4-1||-sup„ |yB| = ||.4_1|| • ¡|xr|j, and conclude: (1)

(A)E(m); (2) L„(x)=xn defines an additive continuous functional

Ln on (A).

Presented to the Society, February 24, 1951 under the title On norms of matrix

type for (c) and (m); received by the editors October 16, 1950.


