
TWO-DIMENSIONAL SUBGROUPS1

DEANE MONTGOMERY AND LEO ZIPPIN

1. Introduction. The authors have recently shown (see [l], bibliog-

raphy) that every separable metric, connected, locally compact,

noncompact, w-dimensional group G with n — l has a subgroup iso-

morphic to the real numbers. The subgroup is understood to be

closed in the topological as well as in the algebraic sense. In the

present paper it will be shown that if ra = 2, the group G has a non-

compact, connected, two-dimensional subgroup.

The analogous result is not true for compact groups; witness the

proper rotation group 03 of three-space and its universal covering

group. However, these are the only exceptions. It is a corollary of the

result of this paper and known facts about compact groups [7; 8]

that O3 and its covering group are the only connected finite-dimen-

sional locally compact groups of dimension greater than two which

fail to contain two-dimensional subgroups.

We shall use the main result and follow the notation of the earlier

paper [l]. The brief summary of supporting ideas which is given in

§2 of that paper may be helpful in the reading of this one and refer-

ences to [l] are often to this summary. However, this paper can be

followed without acquaintance with the details of the other.

An outline of the proof follows. In order to prove our theorem it is

sufficient to prove (Theorem 2) that every noncompact connected

«-dimensional group, n>2, has a noncompact connected subgroup of

dimension greater than one and less than n. For this it is sufficient

to consider the case where G has no center and no invariant one-

dimensional subgroup. We assume Theorem 2 false and consider the

»-dimensional connected locally connected group L which is mapped

into an everywhere dense subgroup of G by a one-one continuous

homomorphism. The group L has a subgroup Q isomorphic to the

reals.

We come now to the principal device of the proof. The assumption

that Theorem 2 is false implies that the set of conjugates of Q+, one

of the semi-groups of Q, fills out L with no overlap except at e.

These transforms have a cross section S with at least certain

homotopy properties of an (n — l)-sphere. Hence S can have no

nontrivial covering because n — 1 is at least two. But on the other
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hand it is shown that S does have a covering. In this way the assump-

tion that the theorem is false leads to a contradiction.

2. The principal theorem.

Theorem 1. Let G be a connected, separable metric, locally compact,

noncompact n-dimensional group, n>l. Then G contains a two-dimen-

sional connected noncompact subgroup.

The principal theorem may be derived from the following by a

simple induction on dimension.

Theorem 2. Let G be a connected, separable metric, locally compact,

noncompact n-dimensional group, n>2. Then G contains a connected

noncompact closed subgroup H with

1 < dim H < n.

We shall prove Theorem 2 by a reductio ad absurdum. To this

end we formulate the following assumption, whose contradiction

establishes Theorem 2. It is always assumed that G is separable

metric and locally compact.

Assumption (A). There exists a noncompact n-dimensional group G,

n>2, containing no connected subgroup H which is not compact and

for which
1 < dim H < n.

We shall show first that (A) is equivalent to a formally stronger

proposition in which the group G is assumed to have only a trivial

center. We show this in a sequence of lemmas based on (A).

3. Consequences of Assumption (A).

Lemma 3.1. G contains no connected one-dimensional normal subgroup.

Suppose A to be a connected one-dimensional normal subgroup of

G. The group N is abelian [2] and G/N is finite-dimensional [3].

There are two possible cases. First, if N is compact, we know that

G/N is not compact, and in this case G/N contains a subgroup iso-

morphic to the reals [l]. Let this group be denoted by F. In the

second case N is not compact and N is itself isomorphic to the reals.

Now, in this second case, G/N is at least one-dimensional and con-

tains some connected one-dimensional subgroup; let this subgroup be

denoted by F. In either case let H denote the subgroup/_1(F) where

/ is the natural map

f:G-+G/N.
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It is clear that in each case the group H is connected and not com-

pact. Moreover, it is at most two-dimensional since F and N are

both one-dimensional [l; 4]. Since in each case N is a proper sub-

group of H, it follows that H is at least two-dimensional. Then the

existence of N leads to a contradiction of (A) since H is a two-dimen-

sional noncompact group.

Corollary 3.11. The center of G is zero-dimensional.

An abelian group of positive finite dimension contains one-dimen-

sional subgroups [8] and every subgroup of the center is normal.

This together with the preceding lemma proves the corollary.

Let Z be the center of G.

Lemma 3.2. The group G/Z has no center but the identity.

By 3.11, dim Z = 0. Let / be the map

/: G^G/Z.

The group G/Z is finite-dimensional and its center will be denoted

by Z*. Let N be the identity component of f~l(Z*),

N = Cef-\Z*),

so that N is a connected normal subgroup of G. By 3.1, N is not one-

dimensional. Assume for the moment that

1 < dim N < dim G

so that by (A), N is compact. Now NC\Z is zero-dimensional and

A/ (N r\ Z) E z*

is abelian, so by known theorems on compact groups [7; 8] N is

abelian, and is therefore central [ó]. This is impossible by 3.11. It

follows that dim N = 0 or re.

If dim N=0, then N = e and /_1(Z*) is zero-dimensional. But

f~1(Z*) is invariant and therefore central. Hence f~l(Z*)EZ, and

since/(Z) is the identity of G/Z, this is the assertion of the lemma.

The only case left to consider is where

dim N = dim G = re > 2.

In this case N = G [l]. This means that G/Z is abelian. Since Z is

zero-dimensional, G/Z is at least three-dimensional. We distinguish

two subcases. First if G/Z is not compact, then by the known struc-

ture of abelian groups [8] it contains a proper noncompact con-

nected subgroup H of dimension more than one. Then the identity
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component of f~x(H) is a noncompact two- (or more) dimensional

proper subgroup of G and this contradicts Assumption (A). There

remains the case where G/Z is compact as well as abelian.

In this case let H be a compact connected two-dimensional sub-

group of G/Z and let N=Cef~1(H). Now 1 <dim N <G, so N is com-

pact. Then since N is also normal and abelian, it is necessarily

central. This contradicts 3.11 and proves the lemma.

Lemma 3.3. The group G/Z contains no noncompact connected sub-

group H* such that

1 < dim H* < dim G/Z.

If such a subgroup exists, it is a proper subgroup of the finite-

dimensional group G/Z and

H = tl(S*)

is a noncompact proper subgroup of G. Since Z is zero-dimensional,

H is of at least as large a dimension as H* so that

1 < dim H < dim G.

Now

dim Ce(H) = dim H

so that Ce(H) must be compact by (A). Thus the noncompact H

must contain a compact open subgroup Hi, and

J(Hi)

is a closed, in fact compact, subgroup of H*. Therefore, since H* is

connected,

aim f (HO <dimH*.

Since f(H) is the union of countably many sets homeomorphic to

f(Hi), dim f(H) = dim f (Hi). However this is a contradiction, since

f(H)=H* and this proves the lemma.

Lemma 3.4. The group G/Z is not compact.

It is shown in the proof of 3.2 that G/Z cannot be compact abelian,

and we know that dim G/Z^3.

Let T be a subgroup of G which is isomorphic to the real numbers,

and let

F = f(T)

so that F is a connected closed subgroup of G/Z. Suppose that G/Z
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is compact. If dim G/Z exceeds 3, then G/Z is the limit of a sequence

of Lie groups Gt where dim G< = dim G/Z>3. It follows from the

known classification of compact simple Lie groups [8] that rank G i

= rank G 5; 2 (where rank is the maximum dimension of abelian

subgroups). This can be used to show that F is in an abelian proper

subgroup H of G/Z where

dim H ^ 2.

As before, consideration of f_1(H) leads to a contradiction.

Now dim G/Z>2 since dim G>2 and dim Z = 0. Thus there re-

mains to investigate only the case that dim G/Z = 3, G/Z compact.

If G/Z has rank 2 or more, we obtain a contradiction as above.

If G/Z is of rank one, then it is one of the two well known simple

Lie groups, the rotation-group of three-space or its three-sphere

universal covering. Let Z* be a compact open subgroup of Z. Then

Z* is invariant and the group G/Z* is not compact. There is a

natural map from G/Z* to G/Z which is an infinite covering map,

but there is no such covering when G/Z is either of the groups under

consideration. Hence in either case G could not have been connected

and noncompact and this final contradiction completes the proof

of the lemma.

It follows from the preceding lemmas that Assumption (A) im-

plies the following formally stronger assumption.

Assumption (B). There exists a connected group G which is not

compact, is of dimension «>2, has only a trivial center and no normal

one-dimensional subgroup, and contains no connected subgroup H

which is not compact for which

1 < dim H < re.

In the sequel we shall operate on Assumption (B). The contradic-

tion of (B) ultimately gives a proof of our principal theorem.

If x is in G, the symbol Gx denotes the set of those elements of G

which commute with x and

Kx = Ce(Gx).

The subgroups Gx and Kx are closed. We also use the symbol g[x] as

follows:

g[x] - gxg-1-

4. Consequences of Assumption (B).

Lemma 4.1. Let Ti be isomorphic to the reals and T2 be a distinct

connected abelian group, or abelian local group. Then
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Ti (~\ T2 = e.

This is clear enough, because if 7\ and T2 contained a point z, the

group G2 would be at least two-dimensional and noncompact. Since

there is no nontrivial center in G, either z — e as is to be proved or

Gz is of dimension less than n, and we have contradicted (B). This

completes the proof.

Lemma 4.2. Let K be a connected noncompact subgroup of G and let

Gr be the normalisor of K. Then K is the identity component of Gr,

K = Ce(GK).

In the light of Assumption (B) the only case to consider is dim K

= 1. If

dim Gx > dim K = 1,

then dim Gr < n contradicts (B) and

dimGic = n

implies that K is invariant, and this is impossible by (B). This com-

pletes the proof.

Lemma 4.3. // T, in G, is isomorphic to the reals, then for any xET,

Xy¿e,

T = Kx.

By (B), x is not central, and so dim Gx<n. Since TEKXEGX, it

follows by (B) again that

dim Gx ^ 1

and therefore

dimGs = 1.

It is now clear that

T = Kx

and the proof of the lemma is complete.

For the next lemmas, let T denote a fixed subgroup of G isomorphic

to the reals and let

S = G[T]

be the totality of elements belonging to transforms gTg~l of T, gEG.

Lemma 4.4. Let xE~S, x^e, where 3? is the closure of S = G[T]. Then
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dim Gx = l, Kx is isomorphic to the reals, and KXES.

Since XT^e and xES, there exists a sequence of elements

x» G S,        xnr¿ e

which converges to x. For each x„ the associated Gx„ contains a trans-

form of Fand is at least one-dimensional. By the preceding lemma it

is then exactly one-dimensional and each identity-component KXn is

in fact a suitable transform gnTgñl of T, for some gnEG. It is clear

that a subsequence of these groups must converge to some subgroup

of Gx with a component extending from e to infinity. (Note that it

is not asserted that the limit is connected nor that x belongs to

Kx.) Accordingly Kx is not compact and dim Kx>0. From this it

follows as above that

dim Kx = 1,

and then Kx is isomorphic to the reals since it is not compact. Clearly

every point of Kx is a limit of points of S, and KXES. This proves the

lemma.

It may conceivably happen that x is in S but not in S and even that

Kx is in S, although GX is only in S.

Now let L denote the re-dimensional connected, locally compact,

locally connected group associated [l] with G, and let a be the one-

one continuous homomorphism taking L into G,

a: L^G.

If G is locally connected, then L coincides with G and a is the

identity map. In general, L is a distinct group and the image a(L) is

everywhere dense in G. This set a(L) is algebraically closed, and is

uniquely determined as the maximal arc-wise connected subset of G

which contains e.

The group T and every gTg-1, g in G, is contained in a(L). Thus

S=G[T]Ea(L).

Now let

Q = orKfl

and let

P ■= L[Q].

The set Q is a subgroup of L isomorphic to the reals and P is a sub-

set of L such that
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a(P) E S.

This last is because every group

tnQmr1 EL, min L,

is mapped by a into

gTr1 c s

where g=a(m).
Let T+ denote a fixed one of the two semi-groups of T which we

may think of, say, as corresponding to the non-negative reals.

Let

0+ = a~\T+)

and let

P+ - L[Q+].

It can be seen as above that

a(P+) ES+ =G[T+].

In the next section we shall show that P+ fills out L. Here we estab-

lish some preliminary lemmas.

Lemma 4.5. Let y in L, y¿¿e, belong to the closure of P+. Then Ky,

the identity component of Ly, belongs to the closure of P, and Ky is

isomorphic to the reals.

Choose elements y„ in P+, yn^e, such that y„ approaches y.

Take gn in L and qn in Q+ such that
-i

yB = gnqngn

and define the noncompact connected set Qn by

on -  gnQgn  •

The sets Qn have a subsequence converging sequentially to an

abelian group which contains y, and this group will be denoted by H

for the moment. Then H belongs to the closure of P and H has a

component K which is not compact. Thus dim A^l. On the other

hand

k:ekv

and

a(Kv) C G,
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for that element x in G for which

x = a(y).

Since a(y) is continuous, it follows that x belongs to the closure

of a(P). Since S contains a(P), we know from a preceding lemma that

dim Gx = 1

and it follows that

1 g dim K g dimKyè 1

?*nd that

Ky   =    K

is isomorphic to the reals. This completes the proof.

Corollary. If b in L, b^e, belongs to the closure of P+, then the

group generated by b and Kb is abelian.

This follows because the group considered in the corollary is con-

tained in the abelian group H used in the proof of the lemma.

The element b may or may not be in K = Kb. The symbol bK de-

notes K if b is in K; otherwise bK denotes a coset of K.

Lemma 4.6. Let b be an element of L,bj±e, with b in the closure of P+.

Then K = Kb is isomorphic to the reals and belongs to the closure of P.

For any g in L the intersection

bK r\ g(bK)g-i

is vacuous, or is the identity element, or it is the coset bK.

For the most part this is a restatement of the preceding lemma and

corollary. For the proof of the final statement observe that any

zEbKC\ g^fyg-1

commutes with every element of bK and with every element of

g(bK)g_1. If Li is one-dimensional, it cannot contain two intersecting

lines. Hence if bK and g(bK)g~l are distinct and contain z, then L2 is

at least two-dimensional and noncompact. If z is not e, let

y = a(z),        y 9*- e.

Then Kv is at least two-dimensional and noncompact. This contra-

dicts Assumption (B) and completes the proof.

5. The  set  L[bK],  Continuing the notation of the preceding
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lemma, we shall investigate the set of elements lying on transforms

of the coset bK. It is to be understood as remarked above that if b

is in K then bK = K. In this way we can discuss the general case

without distinguishing two possible situations.

Let Lr denote the normalisor of K in L. Then a(Lx) is contained

in the normalisor of a(K) in G and therefore, in view of (B), a(K) is

the identity component of a(Li¿). Therefore K is the identity com-

ponent of Lr since a is one-one.

It follows that Lk/K is totally disconnected. Then there exists a

subgroup K' of Lr which is open and closed in Lr and such that

K'/K

is compact. We can regard K'/K as a compact group of automor-

phisms of K. Since K is isomorphic to the reals, there must be an

open and closed subgroup K* of Lr such that every element of K*

commutes with every element of K.

Let K** denote the subgroup of K* which leaves bK invariant.

We can regard K**/K as a compact transformation group of bK.

Since bK is topologically a line, the transformation group K**/K is

effectively a finite group of order two at most. This means that

there is an open subgroup K*** of K** such that every element of

K*** commutes with every element of bK.

This proves the following lemma.

Lemma 5.1. There exists a compact symmetric ¡7(e) in L such that if g

is in U2 and leaves K invariant, then it commutes with every element of

K, and if furthermore it leaves bK invariant, then it commutes also

with every element of bK.

In the sequel we shall suppose that U is a neighborhood of the

identity as described in the preceding lemma, and we shall consider

the sets

U[b]    and    U[bK].

Suppose that a< is in U, i=l, 2, that bi is in bK, i = 1, 2, and that

aibidi   = a2b2a2 .

Then

a2 aibiüi a2 = b2

and

b2EbKC\ abKa-1
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where a is in U2, a = a2~1ai.

It follows from an earlier lemma that abKa~x coincides with bK.

The set abKa~l is the same as the set aba~laKa~l. Let

V = aba'1.

Since bEbK, V = aba~iEabKa~1 = bK. Then b' is in bK and b' com-

mutes with every element of K by Lemma 4.2. Also V commutes

with every element aKa~l since for kEK

b'akar1 — aba^akar1 = abkar1 — akbar1 = akar^abar1 = akarlb'.

This implies that

aKar1   and    K

must coincide, for otherwise Lv would be of dimension at least 2 and

noncompact. Then

aELK

and, since aEU2, it follows from the preceding lemma that a com-

mutes with every element of K.

Lemma 5.2. If a{EU, biEbK, i=l, 2, bi^e, and

OlblOl      =   02b2a2    ,

then

h = b2.

Furthermore

aibkai   = a2bka2

for every k in K.

It was shown above that the element a = a2 lai commutes with every

element of K and also that a leaves bK invariant. Therefore it belongs

to K** and so by the choice of U according to Lemma 5.1 it follows

that a commutes with every element of K and of bK. This proves

the lemma.

Lemma 5.3. The set V[b] is at least (re —1)-dimensional and the set

V[bK] is n-dimensional.

The set U[b] is a continuous image of the compact re-dimensional

set U and inverse images have dimension at most one. This proves

the first part of the lemma.
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Let A be a closed interval in K including e and with the property

that

e is not in bN.

This is possible since b^e. The set £/[&A] has the structure of a

topological product of U[b] and N, as we shall now see.

Let Oi, a2 be in U and »i, n2 be in N which is in K, and assume

aibniOi   = a2ôw2a2 .

Note that bni cannot be e by the choice of N. Then by Lemma 5.2

bni = bn2,       «i = «2,

and also

aibnai   = a2bna2

for every « in A (in fact for every « in A).

Thus, if ai&aj"1 and n are given, the point a/bna\~x is uniquely de-

termined and in this way there is given a map from the set of pairs

(aibai1, n) to the set U[bN]. The relations above show also that the

map is one-one.

Lemma 5.4. It is a consequence of (B) that the set P+ = L [Q+] is all of

L.

It follows from the preceding result that L[<2+] is w-dimensional.

Since L is locally connected, it follows that L[Ç+] has inner points

and if it were not all of L, it would have boundary points which

belonged to an at most (n — l)-dimensional invariant set. But if b

denotes such a boundary point, the preceding lemmas have shown

that there is also some coset bK in the boundary and L[ôA] is

n-dimensional. This is not possible and the lemma is proved.

6. The group LQ. We have shown above that the group L is com-

pletely covered by transforms g(?+g-1 with g in L and Q+ a semi-group

of a fixed group Q isomorphic to the reals. Two distinct semi-groups,

or rays as we shall sometimes call them, have only the identity in

common.

Observe for later use that the fact that L [Q+] fills out L implies the

existence of an element g in L such that

gffr1 = Or-

This means, of course, that the normalisor Lq of Q is larger than

Q, although as we know,
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Q = Ce(LQ).

The fact that L[(?+] fills out L implies also that all elements of L,

except e, generate groups isomorphic to the integers. Hence:

Lemma 6.1. The group L contains no elements of finite order and no

nontrivial compact subgroups.

Lemma 6.2. The group LQ/Q is discrete.

The fact that G has no center but e implies the same for L. Since

every element of L lies on a reals group and every x has a one-dimen-

sional Gx, it follows that no element of L not on Q can commute with

every element of Q. The group Lq has Q as identity component and

it follows, as in the argument preceding Lemma 5.1, that Lq contains

an open subgroup made up of elements commuting with all of Q.

This subgroup must be Q and hence Q is open in Lq as was to be

proved.

Lemma 6.3. Let q^e be in Q. Then L[q] is a local section of the rays

(in the sense of and as proved in 5.2) and L[q] meets Q+, and every

ray, in an infinity of points.

Take g in L so that

gQ+g-1 = Or-

Then

gV+g~2 = Q+-

However g2 cannot commute with all of Q+ for if it did g2 would be in

Q as well as in a reals group through g; so g2 must be a magnification

on Q+ and successive iterates carry a point x of Q toward infinity or e.

This proves the lemma.

7. The cross section S. The family of curves L[Q—e] fills out

L — e. Each element of L has a unique root and power of any order

and this enables us to define for each r > 0 and each x in L an element

xr

in L which depends continuously on x and r. In this way R, the

multiplicative group of positive real numbers, operates as a trans-

formation group on L — e. The operation on L — e will be shown in a

moment to have a property which we have defined earlier [5] as

dispersive. The action of r on x is denoted by r{x}, that is

r{x} = xr.
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In the present context the property of being dispersive means: points

x and y in L — e are interior to compact sets A and B in L — e and

there are positive real numbers ro and ri such that if r>ro or r<ru

then

BC\r{A} =0.

It is easy for integral r and can be shown for all r>0 that for any

elements g and x, gxrg~l = (gxg~1)T, that is,

g[r{x}] = r{g[z]}.

The dispersive property will now be verified. If x is in Q — e, then

from 5.3, U(e) may be so chosen that U[x] is a cross section of

7î[Q~e\- By the remark above,

U[r[x)]-r'{ U[x]}.

Let J1 be a compact interval of R which includes r = 1 as an interior

point. Then i/[r{x}]=.4 is a compact set containing x in its in-

terior, and

r{A} =V[(rT){x}].

The set r{A} is made up of points gxTlg~l, g in U, t in T. For any

preassigned compact B in L — e, such points cannot touch B if r is

sufficiently large or small.

Since R acts dispersively there is a cross section S of the orbits in

the large [5]. Then S is a cross section of the semi-groups of L — e.

If U(e) is given in L with U compact, then B, the boundary of U, is

a compact set touching each ray oí L — e. The set S is the continuous

image of B and hence S is compact. Topologically

L - e = S X R.

We see now that any compact set in L can be shrunk to e. Hence L

is simply connected, locally shrinkable, and all compact cycles in L

bound in L.

Let g and h be any two distinct points in L. Then there is a unique

group P isomorphic to the reals containing e = g~l g and g~lh. In fact

this is a group which is conjugate to Q. The coset gP contains g and

h. This proves the following lemma.

Lemma 7.1. Let g and h be distinct points of L. Then there is a unique

subgroup P of L which is isomorphic to the reals, one of whose cosets

contains both g and h. The unique arc of this coset joining g and h may

be parameterized by (0, 1) in a continuous way by making use of group

parameters on P.
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The last part of the lemma about parameters merely notes the

fact that if e = g~1g is to be zero and g~% is to be one, then the group

parametrization for the arc of P between these points is determined

in a unique way.

Hence if g and h and p, Oèp^-l, are given, there is determined a

unique point, say

Kg, h, p),

of the arc of the coset joining g and A, and 6 is a continuous function

of g, A, and p simultaneously with

eig, h, 0) = g,       dig, A, 1) = A.

Let <¿>(2) and yp(t) be two continuous functions on (0, 1) with values

in L and let

faO) = ¿(0),       fal) = ¿(1).

Then we may deform fat) to ypit) in L while keeping 0(0) and fai)

fixed. This can be done by moving each point fat) along the arc

joining fat) and ypit) with the help of 0 as defined above.

Now let fat) be as above and let e>0 be given. Then there is a

ypit) with the same end points as fat) such that ypit) traces out a one-

dimensional locus and such that <p may be deformed to yp by an e de-

formation which leaves end points fixed. To see this choose a finite

set of points

U = 0, h, • • • , tk = 1.

Let

Hi), Uútú ti+i,

trace out an arc joining fati) and <p(ti+i). Such an arc exists since L

is connected and locally connected. The /<'s may be chosen so that

the curve yp(t) just defined is in an e neighborhood of fat) and so that

fat) stays in such a neighborhood during the deformation as described

above.

Lemma 7.2. For re>2, S is simply connected.

The fact that S is locally shrinkable follows from the same fact for

L. The present lemma, however, needs further discussion.

Let fat) to be a closed path lying in S. The arcs used in defining

yp(t) as discussed above may be chosen in S so that yj/(t) is in S.

This is because fat) is in S and because S is connected and locally

connected. Then fat) is homotopic through an e neighborhood of S
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(in L — e) to a \p(t) in S with a one-dimensional image. This deforma-

tion can be thrown into S since SXR = L — e. Hence we shall assume

that the original <b(t) has a one-dimensional image.

The image of <p(t) cannot cover S whose dimension is n — 1 > 1 and

there is a point y in S such that y is not in 0(0- Let P be the unique

reals group through e and y. Let a be the point of S such that a =0(0)
= 0(1).

Now let C be a cross section of the cosets of P such that C satisfies

i. L = CXP,
ii. aEC,
iii. C crosses P on the opposite side of e from y.

Such a cross section exists [5] because P is a dispersive transforma-

tion group on L under right translations. The dispersive character

of P is easily verified by the use of a right-invariant metric [9],

Then 0(¿) may be deformed to a yp(t) in C leaving a fixed and with-

out crossing e. This can be done by projecting on C along the cosets

of P. The closed path \p(t) in C can be shrunk in C. This is because it

can be shrunk in L keeping a fixed and this shrinking can be projected

along cosets of P.

The set C does not contain e and hence we see that 0(/) is homo-

topic to a constant in the space L — e. This homotopy can be de-

formed to S since L — e = SxR. This proves the lemma.

8. Proof of the theorem. Let Q be a reals group in L and let

q^e be an element of Q. Then by Lemma 6.3

L[q]^L/LQ+ = S

is a nontrivial covering space of S. However, since S is simply con-

nected, it cannot have a nontrivial covering and this contradiction

shows that Assumption (B) is false. As we have seen this proves the

theorem.
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A NOTE OF CORRECTION

EDWIN E. MOISE

It has been pointed out to me by R. H. Bing that the proof

of Theorem 1 of my paper on the Menger convexification problem1

is erroneous; Lemma 2 of this argument is false. In the meantime,

Theorem 2 of my paper (which depended essentially on Theorem 1)

has been proved by Bing.2 Theorem 2 is therefore a valid foundation

for the rest of my argument for the convexification theorem.
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