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1. An important theorem of Stoilow [2, p. 76 j1 states that an

orientable surface (surface = 2-dimensional separable manifold2) ad-

mits an interior mapping into S2. This result is of significance in the

topological classification of Riemann surfaces inasmuch as it can be

used as a fundamental part of the proof that the topological surfaces

which may be rendered Riemann surfaces are precisely the orientable

ones.
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However the proof given by Stoilow for his theorem has been found

unconvincing by a number of mathematicians (it is not clear how

an admissible transition from the «th to the (w + l)st stage of the

construction is guaranteed). In this note we communicate a short

proof of the Stoilow theorem which is free from this objection.

Actually we prove more:

Every orientable surface admits an interior mapping onto S2 which is

ramified over precisely three points and has the property that the com-

ponents of the antecedent of each sufficiently small region of S2 are rel-

atively compact.

In fact, the ramification indices for two of the distinguished points

may be taken as 1 and 2 respectively.

2. We consider a triangulation of the given surface and assume

that each 2-cell of the triangulation is barycentrically subdivided in

the manner indicated by the accompanying figure. Since the surface
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1 Numbers in brackets refer to the bibliography at the end of the paper.

1 We recall Radó's theorem: A surface is triangulable [l].

951



952 MAURICE HEINS

is orientable, it is possible to assign unambiguously to each of the

2-cells of the barycentric subdivision of the given triangulation one

of the designations "shaded," "unshaded" in such a manner that no

two distinct 2-cells of the same designation have an edge in common.

This may be achieved as follows. Each 2-cell of the subdivision has

precisely one edge which lies on a 1-cell of the original triangulation.

If this edge contains the "initial" point of the 1-cell where "initial"

is taken in the sense of the orientation of the 2-cell of the original

triangulation which contains the given 2-cell of the subdivision, we

term the 2-cell of the subdivision "shaded," otherwise "unshaded."

We let a, ß, y denote three distinct points of the equator of S2,

aß the arc free from 7, and so on, and map the 1-cells ab homeo-

morphically onto aß so that a goes into a and b into ß, and proceed

similarly for the 1-cells be and ca with 07 and 7a respectively. On each

"shaded" 2-cell the mapping can be extended to a homeomorphic

mapping of the 2-cell onto the closed northern hemisphere and simi-

larly on each "unshaded" 2-cell the mapping can be extended to a

homeomorphic mapping of the 2-cell onto the closed southern

hemisphere. The resulting map of the surface onto S2 fulfills all the

imposed conditions.
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