ON APPROXIMATION BY WALSH FUNCTIONS
SHIGEKI YANO
Let ¢a(x), =0, 1, 2, - - -, be the Rademacher functions, that is,
do(2) =1 (05 2<1/2), ¢o(x)=—-1 (1/252<1),
do(x + 1) = ¢o(%),  a(x) = ¢o(2"%) (n=1,2,---).
Then the Walsh functions are defined by
(2 Yo(2) =1, Yu(2) = ¢ (£)bny(%) - -+ In, (%)

for n=2m4-2m+4 . . . 427, where the integers r; are uniquely de-
termined by 7:4; <n. As is well known, the Walsh functions {tl/,.(x)}
form a complete orthonormal set. Every periodic function integrable
on (0, 1) will have associated with it a Walsh-Fourier series

(M

0

A3) f(#) ~ 22 cata(),

n=0

where the coefficients are given by
1

@ o= [ S =012,
0

Recently N. J. Fine! has proposed the following problem: if
f(x)ELip @, 0<a<1,? and if we denote the arithmetic mean of the
Walsh-Fourier series of f(x) by a.(x; f), then a.(x; f) —f(x) =0(n—=)?
We shall give here an affirmative answer of this problem and its
generalization. For the definitions, notations, and fundamental re-
sults on the Walsh functions used here we shall refer to Fine’s paper.

THEOREM 1. If f(x) ELip o, 0<a <1, then
(5) an(%; f) — f(x) = O(n=2).
This theorem can be proved by the following lemmas.

- LEmMMA 1.3 Let K,.(¢) be the Fejer kernel for the Walsh functions,
and let I™ denote the interval p-2-"<t<(p+1)2~", 0=Sp <2~ Then
fornz2,

Received by the editors July 10, 1950 and, in revised form, October 9, 1950 and
November 13, 1950.

1 On the Walsh functions, Trans. Amer. Math. Soc. vol. 65 (1949) pp. 372-414.

t Of course, the periodicity with period 1 is assumed.

3 The author wishes to thank the referee for his valuable suggestions for the proof
of this lemma.
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241 .
0 Ke() = o e 1™,
© (i) Kn(t) = 2v2 CE€EIy,r=01--,n—1),
(iii) Kn(?) =0 elsewhere in (0, 1).

PRrOOF. It is obvious that (6) holds for #=2. Suppose that (6)
holds for an #=2. Then we use the identity (cf. Fine, Lemma 3)

14 ¢an(2)
2

) Kaa(t) = En(l) + %Dzﬂ(t)

to prove that it holds for n+1. We know that K,+(¢) is constant on
I®D 0<p<2n+, On IPHY and I™HY, Dyn(t) =27; on IED, Y(t) =1,
and on I%), Ym(t)=—1. Hence on I{*Y, Kgwi(t) = Kon(t)+ 21
=(27+1/24-2%1=(27+14-1)/2, so that (i) is true for n+1. On I"*9,
Kyw(t) =271, so that (ii) is true for n+1, with »=0. For 2-"=<t<1,
Dy(t) =0; hence if tESIETD CIR, for 1 <7 <n-+1, we have

Kopn(t) = Kop(f) = 27 (D=2 = 2(ntl)=r—2,

and (ii) is true for 0=r<#n-+1. Now (iii) follows from the facts that
the integral of Ky (¢) over (0, 1) is 1, that Ky+(f) is non-negative,
and that the integral over the interval specified in (i) and (ii) (with
n replaced by n+1) is

n+1
2—(n1) {z__-i-l_
2

1
+2n—l+---+1+7}=1.

This completes the proof of the lemma.

LeEMMA 2. Under the assumption of Theorem 1,
(8) on(x; f) — f(x) = O(27=).

Proor. We may write
©) ow(w; f) — f(2) = f [z + ) — ()| Kn(t)ds.

Then by Lemma 1,

241
2
n—1 2-nti4-2-n

+3 2 [ [z + 1) — f(=)]at.
tum0

P

om(%; f) — f(x) =

[ e+ - sl
(10) ’
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By virtue of the fact that |(x+4f)—x| ¢, 0sx<1, 05t<1 (cf.
Fine, §2.(2.8)), and 0<a<1,

n—1 2nH42n
o(x; f) — f(x) =2» 0(t°‘)dt+ > 2""“2f O(t*)dt

t=0 9—n4i
n—1
= 0(2~*") + 2n—im2Q(2antit])))—n
a %

n—1
= 0(2—**) 4+ 0(2—=") Z 2-(-a)i

- O(Z—an)’

and this proves the lemma.

We shall now prove Theorem 1. Let m=2m+2724 ... 427,
m>n> - - - >n,.20,and n'=n—2", gD =D -2 7=2 3, ...,
r. Then it is known (Fine, Lemma 4) that

nK,(t) = zr: 2%, () Koni(t) + i 79 Dans (2).
=1 fom]

Therefore we may write

on(z: f) — f(2) = f [z + 0 — f(®) ] Ka()dt

w =~ 2w [ [+ ) = 1) awol ) K

+— anf [f(x + &) — f(2)|Dms()dt

=1

= Pn + Qm
say. By Lemma 2,

1 r 1
| 2| ==X 2m f |75+ 1) = f() | Ke()dt

i=1

(13) L 0( i 2".-2—«"‘) = 1 0( i 2(l-a)i)

n i=1 n i=1
1

= — 0(2U-0m) = O(n~).
n

On the other hand, by the property of Dy(t) (already used in
the proof of Lemma 1),
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(14) ] [ w4 ) = ) ]Dm(t)dl' o 0@yt = 02—,

By definition, #( <27, Therefore
1 r 1 L4
15) | in < — 0( > n(a)z—an,.) = — o( > 2(1—a)u,.) = O(n—9).
n =1 n i=1

(12), (13), and (15) prove the theorem.
More generally we can prove the following theorem.

THEOREM 2. If f(x) ELip o, 0<a <1, then for any 8>«

(16) o (w3 f) — f(x) = 0™,

where 6&(x; f) denotes the (C, B) mean of the Walsh-Fourier series
of f(x), that s,

® 1 3w
On (x;f) = E A»—k—lck\bk(x))
AP s

1 2) ...
A0 _BEDBEDGtm e
n!
Proor. Let K®(¢) be the (C, B)-kernel for the Walsh functions
and let n=2m4-2724 . . . 2% 1, >n,> - - - >n,.20. Then, using
the notations in the proof of Theorem 1, we may write

n—1
A,(f.)lK,(.p )(t) = ZAy(;p—)k—llbk(t)

k=0
(17) 2n)—1 2m+2ng—1 n—1 ®
=—-[ D+ X 4+ > ]An_k-lm(t).
k=0 k=271 k=2M4 -« p2nr-1

Since Yami_j1(t) =y;j()Pamia(t) for 057 <2, it follows that

AR L S
Ane-¥i(?)
Kas2P14-2M24 ¢« o 42"
2n5—1

= ll/2n1+gng_... . .+2ﬂi_1(t) E A”((‘i;+ ,¢2nc_ i—l(t)
(18) §=0

=
C = Yamy. . ogamica(f) Zo Ao i)
Jome

2n—1 ®)
= ‘l’n—n(")—l(t) Z An(‘)+k¢k(t)'

k=0
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Substituting (18) into (17), we get

® 6 !
(19) A,K, (1) = Z: Yan—2(0) Z Asbdn).
Applyihg Abel’s transformation twice, we get

® @ 4 =
A 0K, (t) = Z\b,_,,m_l(t)[ Z kA% (e).,.k Kia(®)

(20) f=1 k=0
+ (2"" - 2)A,(.‘(’i—-}))_2Kg"c_1(t) + Ang-)l)_lpzni (t)] .
Therefore
«,‘.‘”<x- HERC)
é-n, ! .
s—g 2| T Hatnl [+ 0 - )] | Kuns) |
on TR f |15+ ) = f@) || Kanes(® | at

+ 4%, f | f(x &) — f(=) | De(®)dt

E (Pi+ Qi + R),

n—l t=1

say. By Theorem 1

2n;—3

= 3 k| A% fo | fa+ ) — 1) || Kun®) | dt

k=1

2ng .
- 0( Z k- kﬁ_z'K—a) = 0(2 (ﬂ—a)"‘)r An(‘)+b+l—’An("+ki

k=1

(22)

where we assume that a<f8<1 and use the fact that A%?,,
= 0(k-?). It is obvious that

(23) Qi = 0(2me==), Ry = (2n6-0),
Thus by (19), (20), (21) and by the assumption 8>, we have
r N1
a,(.p)(x;f) — f(x) = O(n“"z 2"""’““)) =0 (n"ﬁz 2‘“"“’)
(251 t=1

(24) = O(nnB-) = O(n—2),

and this completes the proof of Theorem 2.
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Theorems 1 and 2 have their analogues in the case of integrated
Lipschitz condition; that is, the following theorem holds:

THEOREM 3. If f(x)ELip (e, p), 0<a <1, p=1, then for any B>«
ooe Up
(25) (f | on (x5 1) —f(x)l"dx> = O(n~).
0

Since the proof is analogous to the preceding one, we shall omit it.

TérOKU UNIVERSITY

POSITIVE INFINITIES OF POTENTIALS
WALTER RUDIN

Let R denote Euclidean 3-space. The following theorem is due to
Evans [1, p. 421].

Let E be a closed bounded set of capacity zero in R. There exists
a distribution of positive mass u(e) entirely on E, such that its
potential V(M) = [z(1/M P) du(P) is infinite at every point of E and
at no other points.

A proof of the two-dimensional analogue was published by Noshiro
[2]. In the present note we show, by a modification of Evans’ con-
struction, that an absolutely continuous distribution exists whose po-
tential is infinite on the preassigned set E only. More precisely, our
result, extended to unbounded sets, is as follows:

THEOREM. Let E be a closed set of capacity zero in R, and let G be
an open set containing E. Then there exists a non-negative function f
which is summable on R, such that the superharmonic function (that is,
the potential)

1
F(M) = fR 5 /(PP

is infinite on E, is continuous in R—E, and is harmonic in R—G.
(G denotes the closure of G.)

Analogous results evidently hold in two and in more than three
dimensions.

Presented to the Society, February 24, 1951; received by the editors December 4,
1950.

! Numbers in brackets refer to the references at the end of the paper.



