
ON APPROXIMATION BY WALSH FUNCTIONS

SHIGEKI yano

Let<p„(x), n = 0, 1, 2, • • -, be the Rademacher functions, that is,

cS„(x) = 1    (0 = x < 1/2),       *,(*) = - 1    (1/2 á * < 1),

<bo(x + 1) = Mx),       <t>n(x) = <i»o(2"x) (n = 1, 2, • • • ).

Then the Walsh functions are defined by

(2) ^o(x) - 1,       ^„(x) = <bní(x)<pní(x) ■ ■ ■ 4>nT(x)

for w = 2ni + 2"s+ • • • +2nr, where the integers r¿ are uniquely de-

termined by n,-+i<«¿. As is well known, the Walsh functions {^n(x)}

form a complete orthonormal set. Every periodic function integrable

on (0, 1) will have associated with it a Walsh-Fourier series

(3) /(*) ~ Z CnUx),
n—0

where the coefficients are given by

(4) cn =  f f(x)Ux)dx (n = 0, 1, 2, • • • ).

Recently N. J. Fine1 has proposed the following problem: if

/(x)GLip a, 0<a<l,2 and if we denote the arithmetic mean of the

Walsh-Fourier series of f(x) by <r„(x;/), then cr„(x;/) —f(x) = O(w_<*)?

We shall give here an affirmative answer of this problem and its

generalization. For the definitions, notations, and fundamental re-

sults on the Walsh functions used here we shall refer to Fine's paper.

Theorem 1. If f(x) E Lip a, 0<a<l, then

(5) an(x;f)-j(x)=0(n-").

This theorem can be proved by the following lemmas.

Lemma l.3 Let Kn(t) be the Fejer kernel for the Walsh functions,

and let if denote the interval p-2-n^t<(p+l)2-", 0^p<2". Then

for n~=2,

Received by the editors July 10, 1950 and, in revised form, October 9, 1950 and
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1 On the Walsh functions, Trans. Amer. Math. Soc. vol. 65 (1949) pp. 372-414.
2 Of course, the periodicity with period 1 is assumed.

' The author wishes to thank the referee for his valuable suggestions for the proof

of this lemma.
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2" + 1 (.)
(i)     KAt)-— (* G lo ),

(6)
(ii)    K2n(t) = 2»—2 (t G fr\ r = 0, 1, ■■■ ,n- 1),

(iii)   Ä"2«(/) = 0 elsewhere in (0, 1).

Proof. It is obvious that (6) holds for » = 2. Suppose that (6)

holds for an » = 2. Then we use the identity (cf. Fine, Lemma 3)

1 + iMO 1
(7) Ä-2-+1 (t) =--^- K2n(t) + — D2n(t)

to prove that it holds for n+l. We know that K2*+l(t) is constant on

Ipn+l),OÚP<2n+K On P0n+1) and Ir+1), ¿V(i) = 2"; on I{2m+1), 4>2»(t) = l,

and on 1^1, yfs2n(t)=-l. Hence on ¿jn+1), K2^(t)=K2-(t)+2n~1

= (2»+i/2+2-1 = (2"+1-T-l)/2, so that (i) is true for n+l. On I<»+1),

K2»+i(t) = 2n~\ so that (ii) is true for n+l, with r = 0. For 2-"áf<l,

¿VW =0; hence if tÇ.I^+1)ClP-h for 1 =r<»+l, we have

£*«(fl - Ä>(0 = 2"-c-1>-2 = 2<»+1>-r-2,

and (ii) is true for 0^r<»+1. Now (iii) follows from the facts that

the integral of AV+1(0 over (0, 1) is 1, that K2*+i(t) is non-negative,

and that the integral over the interval specified in (i) and (ii) (with

n replaced by ra + 1) is

t\-
2-(n+l) )-f_ 2»-l +  .  .  .   +  1 + —J.

This completes the proof of the lemma.

Lemma 2. Under the assumption of Theorem 1,

(8) <r2»(x;/)-/(x) =0(2—).

Proof. We may write

(9) M*\f) - fix) =  f   [f(x + t) - /(*)]**.(<)#.
Jo

Then by Lemma 1,

2" + 1 r 2_"
M*; /) - /(*)-— [f(x + t)- f(x)]dt

¿      J 0

(10) n-l /• 2-»+i+2-n

+ S2»-« [/(* +o-/(*)]*■
,_0 J 2-"+»
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By  virtue of the fact that  \(x+t)-x\^t, 0^x<l, 0 = t<l  (cf.

Fine, §2.(2.8)), and 0<a<l,

/, 2-n n-l « 2-n-K+ü-n

0(t°)dt + Y, 2"-i-2 I 0(t-)dt
0 1=0 J 2-"+*

n-l

= 0(2-°"*) + 2 2"-i-20(2a<-'*+i+1>)2-"

(11) i=0

)i= 0(2-«") + 0(2-«») X) 2-(1-"
t-0

= 0(2-«"),

and this proves the lemma.

We shall now prove Theorem  1.  Let w = 2ni+2n2+ • ■ • +2"r,

«i>w2> • ■ • >wr^0, and n' = n-2n\ »<«=.»<«-»-2"«, i = 2, 3,

r. Then it is known (Fine, Lemma 4) that

r r

nKn(t)  =  2Z 2"'lr'n-n«)W K2m(t) +  }Z »(0IMfl.
t=l f-1

Therefore we may write

*«(*;/) - /(*) =   f   [/(* + <)- f(*)]Kn(t)dt
J 0

- — S 2".- f   [/(x + Í) - /(*)^,_(o(0^r«(i)ift
(12) » i=i      Jo

+ — ¿ »"'» f   [/(x + 0 - f(x)]D2»i(t)dt
n ,_i        Jo

=   P„ + on,

say. By Lemma 2,

I -P* I = - É 2-s f    | /(* + 0 - f(x) | K2n(l)dt
n i=i      J o

(13) =—0( ¿2"i2-«»<>) = —0( ¿2<1-Œ><>)
w     \ ,=i /       n     \ i=i /

1
= — 0(2(1-°",i) =0(»--).

n

On the other hand, by the property of D2m(t) (already used in

the proof of Lemma 1),
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(14)      f   [f(x + t) - f(x)]D2n((t)dt  = 2* f 0(<")<ß = 0<2-«n).
»/ 0 •» 00

By definition, n(i) < 2"'. Therefore

(15) Qn\e — o(Í »(02-«"« J = — o(J2 2<1-a>"A = 0(»~").
»     \ <=i /       n     \ <_i /

(12), (13), and (15) prove the theorem.

More generally we can prove the following theorem.

Theorem 2. ///(x)GLip a, 0<a<l, then for any ß>a

(16) <rf(x;/)-/(s)=0(O,

wAere <t„\x'> f) denotes the (C, ß) mean of the Walsh-Fourier series

of f(x), that is,

°-n   (x;f) = —7¡rY,An-k-lCkÍ'k(x),

m      (ß+l)(ß+2)---(ß+n)      m
An    =-,Ao    =1.

n\

Proof. Let K^(t) be the (C, ß)-kernel for the Walsh functions

and let « = 2ni+2"»+ ■ ■ • +2"', ni>n2> - - ■ >«r^0. Then, using

the notations in the proof of Theorem 1, we may write

AtiKT(t) = ntAnlk-iMt)

(17)
p   2»i—1 2"H+2»2—1 n—1 -1

= I  E +   E  + • • • +      E       K*
L     i-0 *=2"1 /fc=2"M-l-2nr-l J

Since f2»¿_y_i(0 =rpj(t)\p2"i-i(f) lor 0^j<2ní, it follows that

2»l+2»2-)-f-2»i-l

J] An-k-l^k(t)

l^k(t).

fc=2"l+2»¡H-|-2"i-l

2»,—1

^2"l+2"2+..-+2"»-l(0   2-1     AnM+i4'2ni-i-l(t)

(18)
2"i_1

= ^2m+...+2«<-l(<)   E    ^n«)+*lr't(0
i-0

2»(-l

= \pn-n«)-i(t) E  ^4B«)+*^t(/).
)b=0
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Substituting (18) into (17), we get

f 2ni—1

(19) A?2iKn\t) = £ ^n_n(o_i(í) E  A%+kMt)-
»-1 k-0

Applying Abel's transformation twice, we get

2»,—3

(20)

r n*   2";—3

A^1iKT(0   =    ElAn-n«)_lW E    kA%lk-Kk+l(t)
<=1 L     fc=0

+ (2ni - 2)A^7-L2Ki^i(t) + AnV-^iDiM(t)~\.

Therefore

\<rn(x;f)-f(x)\

= 4r ¿ Í"  £ * I ̂ «T+* I f ' I /(* + 0 - /(*) 11 Kk+i(t) IA
-4n-l ¡=1 L    *=i Jo

+ fÄ  f    I /(x + 0 - /(*) I I K2H-i(t) | it
(21) Jo

+ AjU-t  f   \f(x + t)- f(x) | D2«<(t)dt
J a

E (P< + Qi + Ru,Aw, 7",
An—i 1=1

say. By Theorem 1

Pi -   £ k | ¿K |    f    | /(* + t) - f(x) | ¡ Kk+i(t) | dt
k—l J 0

(22)

= O ( E * F-2 • IT-A = 0(2 »-«) »«), 4.w+»n-»^.<fl+w

where we assume that a<ß<l  and use  the  fact that A%+t+

= 0(kß~2). It is obvious that

(23) Qi = 0(2»'»—)),       Ri = (2»'»-«>).

Thus by (19), (20), (21) and by the assumption ß>a, we have

<Tn\x;f) - f(x) = 0(n-^2Z 2»«<"-«A = 0 (V"E 2i«i-">)
(24) V      i=1 ' V      w '

= 0(»-*»»-«>) = 0(n-°),

and this completes the proof of Theorem 2.
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Theorems 1 and 2 have their analogues in the case of integrated

Lipschitz condition; that is, the following theorem holds:

Theorem 3. Iff(x)ELip (a, p), 0<a<l, p^l, then for any ß>a

(25) ( J   | aT(x;f) - f(x) \'dx\  ' = 0(n~").

Since the proof is analogous to the preceding one, we shall omit it.

Tôhoku University

POSITIVE INFINITIES OF POTENTIALS

WALTER RUDIN

Let R denote Euclidean 3-space. The following theorem is due to

Evans [l, p. 421 J.1

Let £ be a closed bounded set of capacity zero in R. There exists

a distribution of positive mass p(e) entirely on E, such that its

potential V(M) = Jr(\/MP) dp(P) is infinite at every point of E and

at no other points.

A proof of the two-dimensional analogue was published by Noshiro

[2]. In the present note we show, by a modification of Evans' con-

struction, that an absolutely continuous distribution exists whose po-

tential is infinite on the preassigned set E only. More precisely, our

result, extended to unbounded sets, is as follows:

Theorem. Let E be a closed set of capacity zero in R, and let G be

an open set containing E. Then there exists a non-negative function f

which is summable on R, such that the superharmonic function (that is,

the potential)

F(M) =   f  -f(P)dP
JB MP

is infinite on E, is continuous in R — E, and is harmonic in R — G.

(G denotes the closure of G.)

Analogous results evidently hold in two and in more than three

dimensions.

Presented to the Society, February 24, 1951; received by the editors December 4,

1950.
1 Numbers in brackets refer to the references at the end of the paper.


