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Theorems 1 and 2 have their analogues in the case of integrated
Lipschitz condition; that is, the following theorem holds:

THEOREM 3. If f(x)ELip (e, p), 0<a <1, p=1, then for any B>«
ooe Up
(25) (f | on (x5 1) —f(x)l"dx> = O(n~).
0

Since the proof is analogous to the preceding one, we shall omit it.
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Let R denote Euclidean 3-space. The following theorem is due to
Evans [1, p. 421].

Let E be a closed bounded set of capacity zero in R. There exists
a distribution of positive mass u(e) entirely on E, such that its
potential V(M) = [z(1/M P) du(P) is infinite at every point of E and
at no other points.

A proof of the two-dimensional analogue was published by Noshiro
[2]. In the present note we show, by a modification of Evans’ con-
struction, that an absolutely continuous distribution exists whose po-
tential is infinite on the preassigned set E only. More precisely, our
result, extended to unbounded sets, is as follows:

THEOREM. Let E be a closed set of capacity zero in R, and let G be
an open set containing E. Then there exists a non-negative function f
which is summable on R, such that the superharmonic function (that is,
the potential)

1
F(M) = fR 5 /(PP

is infinite on E, is continuous in R—E, and is harmonic in R—G.
(G denotes the closure of G.)

Analogous results evidently hold in two and in more than three
dimensions.

Presented to the Society, February 24, 1951; received by the editors December 4,
1950.

! Numbers in brackets refer to the references at the end of the paper.
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To begin with, we suppose that E is bounded and contains in-
finitely many points. Let # be a positive integer, and put

1 1 1
1 V” _ in —{ —— oo .
) Ql,.I.I.lfi:,,EE {Ténn n (PQ1 + + P Qn)}

Since E contains infinitely many points, V, <+ «. The compactness
of E implies that there exist points Py, - - -, P, on E, such that, for
all Pon E,

@ (ot o)z
n \PP, pp,) = "

The transfinite diameter of E is defined as the limit of the sequence
{D.} where

nin—1) 1 . { 1 }
- = min Z .
2 D, Q- 0, € Lisi<ksa QiQk

It can be shown [1, p. 423] that V.2 (Day1)~L The transfinite di-
ameter of a compact set being equal to its capacity [3], it follows that

3) lim V, = + w.

n— o

So far we have followed Evans. We now choose r, such that
0<r,<(nV,)"! (this is possible, since V,< 4 «), and such that the

closed spheres S; with centers at P; (¢=1, : - +, n) and radius r, are
contained in G. For 1=1, - - -, n, we define
3
(P E Si))

(P) = S 6P) (PER),

=1

¢:(P) = Anmrd

1
UnM) = L T{—;u,,(P)dP (M € R).

Then [ru.(P)dP=1, and U, is the potential of a unit mass. Suppose
MEE. If MER—(S1+ - - - +S.), then

1 1
4 U.(M) = — = Va
@ (1) n(MPl+ +Mp,.)
(by (2)). If MES;, then
5 U(M)>f ! (P)dp—s’:_‘2> 1 SV
" s; MP o T T o "
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where t=MP;. By (4), (5),
(6) U(M) 2V, (M € E).
By (3), there is a sequence {n:} such that V,,=2* We define

fP) = 3 244 (P) (P E R),
k=1

Fon) = [ L jpar =Y rw,an  MeER

rR MP k=1 " '

Then [rf(P)dP=1; by (6), F(M)=+« if MEE; if MER-E, f
is bounded in some neighborhood of M (since r,—0 as #— ), which
implies that F is continuous in R—E; and in R—G, f=0, hence F is
harmonic.

Next, if E is finite, let E=A4;4+ + - - +A4.,. Choose >0 such that
the closed spheres S; with centers at 4; (=1, - - -, m) and radius r
are contained in G, and define

—2 ’f : mn

sw={ TS n-Fer  ren.
0 otherwise, im1

The conclusion of the theorem evidently holds for this function f.

Hence the theorem is proved for bounded sets E.

Finally, suppose E is unbounded. There exist compact sets
E;(i=1,2,3, - - - ) such that R= >, E;, and open sets G; contain-
ing E; such that no point of R is in more than four of the sets G..
We now apply the previously obtained result for bounded sets to
construct functions f; (¢=1, 2, 3, - --) which satisfy the con-
clusion of the theorem with respect to the sets E-E; and G-G;, such
that [zf:(P)dP=2-, and put f(P)= D> 2, fi{(P). For any P, this
sum contains at most four nonzero terms. Hence it is easily verified
that the conclusion of the theorem holds.
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