Theorems 1 and 2 have their analogues in the case of integrated Lipschitz condition; that is, the following theorem holds:

THEOREM 3. If $f(x) \in \text{Lip } (\alpha, p)$, $0 < \alpha < 1$, $p \ge 1$, then for any $\beta > \alpha$

(25)
$$\left(\int_0^1 \left| \sigma_n^{(\beta)}(x;f) - f(x) \right|^p dx \right)^{1/p} = O(n^{-\alpha}).$$

Since the proof is analogous to the preceding one, we shall omit it.

Tôhoku University

POSITIVE INFINITIES OF POTENTIALS

WALTER RUDIN

Let R denote Euclidean 3-space. The following theorem is due to Evans [1, p. 421].

Let E be a closed bounded set of capacity zero in R. There exists a distribution of positive mass $\mu(e)$ entirely on E, such that its potential $V(M) = \int_{R} (1/MP) d\mu(P)$ is infinite at every point of E and at no other points.

A proof of the two-dimensional analogue was published by Noshiro [2]. In the present note we show, by a modification of Evans' construction, that an *absolutely continuous* distribution exists whose potential is infinite on the preassigned set *E* only. More precisely, our result, extended to unbounded sets, is as follows:

THEOREM. Let E be a closed set of capacity zero in R, and let G be an open set containing E. Then there exists a non-negative function f which is summable on R, such that the superharmonic function (that is, the potential)

$$F(M) = \int_{R} \frac{1}{MP} f(P) dP$$

is infinite on E, is continuous in R-E, and is harmonic in $R-\overline{G}$. $(\overline{G}$ denotes the closure of G.)

Analogous results evidently hold in two and in more than three dimensions.

Presented to the Society, February 24, 1951; received by the editors December 4, 1950.

¹ Numbers in brackets refer to the references at the end of the paper.

To begin with, we suppose that E is bounded and contains infinitely many points. Let n be a positive integer, and put

$$(1) V_n = \max_{Q_1, \dots, Q_n \in E} \left\{ \min_{P \in E} \frac{1}{n} \left(\frac{1}{PQ_1} + \dots + \frac{1}{PQ_n} \right) \right\}.$$

Since E contains infinitely many points, $V_n < +\infty$. The compactness of E implies that there exist points P_1, \dots, P_n on E, such that, for all P on E,

$$(2) \qquad \frac{1}{n} \left(\frac{1}{PP_1} + \cdots + \frac{1}{PP_n} \right) \ge V_n.$$

The transfinite diameter of E is defined as the limit of the sequence $\{D_n\}$ where

$$\frac{n(n-1)}{2} \cdot \frac{1}{D_n} = \min_{Q_1, \dots, Q_n \in E} \left\{ \sum_{1 \le i < k \le n} \frac{1}{Q_i Q_k} \right\}.$$

It can be shown [1, p. 423] that $V_n \ge (D_{n+1})^{-1}$. The transfinite diameter of a compact set being equal to its capacity [3], it follows that

$$\lim_{n\to\infty}V_n=+\infty.$$

So far we have followed Evans. We now choose r_n such that $0 < r_n < (n V_n)^{-1}$ (this is possible, since $V_n < +\infty$), and such that the closed spheres S_i with centers at P_i $(i=1, \dots, n)$ and radius r_n are contained in G. For $i=1, \dots, n$, we define

$$\phi_i(P) = \begin{cases} \frac{3}{4n\pi r_n^3} & (P \in S_i), \\ 0 & (P \in R - S_i), \end{cases} u_n(P) = \sum_{i=1}^n \phi_i(P) \quad (P \in R),$$
$$U_n(M) = \int_R \frac{1}{MP} u_n(P) dP \quad (M \in R).$$

Then $\int_R u_n(P)dP = 1$, and U_n is the potential of a unit mass. Suppose $M \in E$. If $M \in R - (S_1 + \cdots + S_n)$, then

(4)
$$U_n(M) = \frac{1}{n} \left(\frac{1}{MP_1} + \cdots + \frac{1}{MP_n} \right) \ge V_n$$

(by (2)). If $M \in S_i$, then

(5)
$$U_n(M) > \int_{S_n} \frac{1}{MP} \phi_i(P) dP = \frac{3r_n^2 - t^2}{2nr_n^3} \ge \frac{1}{nr_n} > V_n,$$

where $t = MP_{j}$. By (4), (5),

(6)
$$U_n(M) \ge V_n \qquad (M \in E).$$

By (3), there is a sequence $\{n_k\}$ such that $V_{n_k} \ge 2^k$. We define

$$f(P) = \sum_{k=1}^{\infty} 2^{-k} \boldsymbol{u}_{n_k}(P) \qquad (P \in R),$$

$$F(M) = \int_{R} \frac{1}{MP} f(P) dP = \sum_{k=1}^{\infty} 2^{-k} U_{n_{k}}(M) \qquad (M \in R).$$

Then $\int_R f(P)dP = 1$; by (6), $F(M) = +\infty$ if $M \in E$; if $M \in R - E$, f is bounded in some neighborhood of M (since $r_n \to 0$ as $n \to \infty$), which implies that F is continuous in R - E; and in $R - \overline{G}$, f = 0, hence F is harmonic.

Next, if E is finite, let $E = A_1 + \cdots + A_m$. Choose r > 0 such that the closed spheres S_i with centers at A_i $(i = 1, \cdots, m)$ and radius r are contained in G, and define

$$\phi(t) = \begin{cases} t^{-2} & \text{if } 0 < t < r, \\ 0 & \text{otherwise,} \end{cases} \qquad f(P) = \sum_{i=1}^{m} (\phi PA_i) \qquad (P \in R).$$

The conclusion of the theorem evidently holds for this function f. Hence the theorem is proved for bounded sets E.

Finally, suppose E is unbounded. There exist compact sets E_i $(i=1, 2, 3, \cdots)$ such that $R = \sum_{i=1}^{\infty} E_i$, and open sets G_i containing E_i such that no point of R is in more than four of the sets G_i . We now apply the previously obtained result for bounded sets to construct functions f_i $(i=1, 2, 3, \cdots)$ which satisfy the conclusion of the theorem with respect to the sets $E \cdot E_i$ and $G \cdot G_i$, such that $\int_R f_i(P) dP = 2^{-i}$, and put $f(P) = \sum_{i=1}^{\infty} f_i(P)$. For any P, this sum contains at most four nonzero terms. Hence it is easily verified that the conclusion of the theorem holds.

REFERENCES

- 1. G. C. Evans, Potentials and positively infinite singularities of harmonic functions, Monatshefte für Mathematik und Physik vol. 43 (1936) pp. 419-424.
- 2. K. Noshiro, Contributions to the theory of the singularities of analytic functions, Jap. J. Math. vol. 19 (1948) pp. 299-327.
- 3. G. Pólya and G. Szegő, Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen, J. Reine Angew. Math. vol. 165 (1931) pp. 4-49.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY