CERTAIN HOMOGENEOUS UNICOHERENT INDECOMPOSABLE CONTINUA

F. BURTON JONES

A simple closed curve is the simplest example of a compact, non-degenerate, homogeneous continuum. If a bounded, nondegenerate, homogeneous plane continuum has any local connectedness property, even of the weakest sort, it is known to be a simple closed curve [1, 2, 3]. The recent discovery of a bounded, nondegenerate, homogenous plane continuum which does not separate the plane [4, 5] has given substance to the old question as to whether or not such a continuum must be indecomposable. Under certain conditions such a continuum must contain an indecomposable continuum [6]. It is the main purpose of this paper to show that every bounded homogeneous plane continuum which does not separate the plane is indecomposable.

NOTATION. If M is a continuum and x is a point of M, U_x will be used to denote the set of all points z of M such that M is aposyndetic at z with respect to x.² It is evident that U_x is an open subset of M.

LEMMA. If the compact metric continuum M is homogeneous and x and y are distinct points of M, then U_y is not a proper subset of U_x .

PROOF. Suppose on the contrary that U_y is a proper subset of U_x . Since M is homogeneous, there exists a homeomorphism T such that T(M) = M and T(x) = y. Then $T(U_x) = U_y$ and $T(U_y)$ is $U_{T(y)}$ which is a proper subset of U_y . Hence there exists a sequence $x_0 = x$, $x_1 = y$, $x_2 = T(y)$, \cdots , $x_n = T^n(x)$, \cdots of points of M such that for each positive integer n, U_{x_n} is a proper subset of $U_{x_{n-1}}$. For no two nonnegative integers i and j is $x_i = x_j$, because if $x_i = x_j$ then $U_{x_i} = U_{x_j}$. Consequently the sequence x_1, x_2, x_3, \cdots has a limit point x_ω . Now for each positive integer n, U_{x_ω} is a subset of U_{x_n} , because if p is a point of U_{x_ω} there exist a subcontinuum K of M and an open subset V of M such that $M-x_\omega \supset K \supset V \supset p$; hence for infinitely many positive integers n, M is a posyndetic at p with respect to x_n and hence p belongs to U_{x_n} .

Evidently $x_{\omega} \neq x_n$, $n = 1, 2, 3, \cdots$. And since M is homogeneous,

Presented to the Society, December 28, 1950; received by the editors December 26, 1950.

¹ Numbers in brackets refer to the bibliography at the end of this paper.

² The continuum M is aposyndetic at the point z of M with respect to the point x of M provided that M contains a continuum K and an open (rel. M) subset V such that $M-x\supset K\supset V\supset z$.

there exists a homeomorphism T_1 such that $T_1(M) = M$ and $T_1(x) = x_{\omega}$. Then $T_1TT_1^{-1}$ is a homeomorphism of M onto itself such that if we let $x_{\omega+1} = T_1TT_1^{-1}(x_{\omega})$, $T_1TT_1^{-1}(U_{x_{\omega}}) = U_{x_{\omega+1}}$ which is a proper subset of $U_{x_{\omega}}$. This process can be continued uncountably many times to produce a well-ordered sequence $\alpha = x_1, x_2, x_3, \dots, x_i, \dots (i < \omega_1)$, of distinct points of M such that (1) if x_i of α has no immediate predecessor in α , x_i is a limit point of some countable subsequence of α running through the terms of α preceding x_i in α , and (2) U_{x_1} , U_{x_2} , U_{x_3} , \dots , U_{x_i} , \dots is a monotone descending sequence of distinct open subsets of M. In a compact metric space (2) is impossible.

THEOREM 1. A homogeneous, hereditarily unicoherent, compact metric continuum M is indecomposable.

PROOF.³ Suppose that U is an open subset of M and H is a subset of M-U such that in order for a point x to belong to H it is necessary and sufficient that $U_x = U$. In case M contains no such sets U and H, M is indecomposable by Theorem 9 of [7].

It is rather easy to see that H is closed. Suppose that there exists a point y of $\overline{H}-H$. Let z be a point of U_y . Then M is aposyndetic at z with respect to y and hence M is aposyndetic with respect to some point of H. Consequently z belongs to U. But by the lemma U_y cannot be a proper subset of U and hence $U_y = U$ and y belongs to H. So H is closed.

If w is a point of M such that some point x of H cuts w from a point z_1 of U, then x cuts w from all points of U and w belongs to H. For suppose that z_2 is a point of U. There exist continua K_1 and K_2 and open sets V_1 and V_2 such that $M-x\supset K_i\supset V_i\supset z_i$ (i=1,2). Now if x cuts V_1 from V_2 , it follows from the homogeneity of M that every point of M cuts between two open subsets of M; but by Corollary 2 of [8], this is impossible. So x does not cut V_1 from V_2 and hence there exists a continuum K in M-x such that $K\cdot V_1\neq 0$ and $K\cdot V_2\neq 0$. The continuum K_1+K+K_2 contains z_1 but not x; hence K_1+K+K_2 does not contain w; consequently x cuts w from all points z_2 of U and furthermore z_2 belongs to U_w . This shows that U is a subset of U_w and, by the lemma, $U=U_w$. So w belongs to H.

³ Throughout this proof M will be considered to be space. If there do not exist points x and z of M such that M is aposyndetic at z with respect to x, then M is indecomposable (Theorem 9 of [7]). So because M is homogeneous it will be assumed that for each point x of M, U_z exists (that is, nonvacuous).

A point x cuts w from z (in M) provided that there exists no subcontinuum of M lying in M-x and containing w+z.

For each point o of H, let N_o denote o together with all points x of H such that x cuts o from U. The set N_o is closed. Now suppose that for some point o of H, o does not cut all other points of N_o from U. Then N_o contains a point o_1 such that N_{o_1} is a subset of $N_o - o$. A homeomorphism of M onto itself carrying o into o_1 leaves U invariant and carries o_1 into a point o_2 of H such that N_{o_2} is a proper subset of N_{o_1} . As in the proof of the lemma, this process may be continued uncountably many times to produce an uncountable monotone sequence of distinct closed sets. This is impossible. Consequently o cuts all other points of N_o from U. It follows at once that each point of N_o cuts all other points of N_o from U and in particular if a point p of H cuts a point o of H from O, then O cuts O from O, and O and O of O from O cuts O from O from O cuts O from O fro

The set H contains no domain. For suppose on the contrary that H contains a domain D. Let o denote a point of H. Then N_o does not contain D, for if it did, a point x of D could cut the domain D-x from the domain U contrary to Corollary 2 of [8]. So $D-D \cdot N_o$ is a domain in H containing no point of N_o . Now M is not aposyndetic at any point of $D-D \cdot N_o$ with respect to a point of N_o . Hence by Theorem 6 of [7], if z is a point of U, $D-D \cdot N_o$ contains a point x and N_o contains a point y such that y cuts x from z and hence from z. Therefore z cuts z from z and consequently z belongs to z. This is a contradiction since z belongs to z0. So z1 contains no domain.

The domain U is dense in M. Suppose the contrary. There exists a domain D lying in $M-(\overline{U}+H)$. Let y be a point of H. By the definition of U, M is not aposyndetic at any point of D with respect to y. Let z be a point of U. By Theorem 6 of [7], D contains a point x such that y cuts x from z. Hence (by paragraph 3 of this proof) x belongs to H contrary to construction. So U is dense in M and the boundary of U is M-U.

The set M-U is a continuum. Obviously M-U is closed. Suppose that M-U is not connected; then M-U=A+B where $\overline{A}=A$, $\overline{B}=B$, and $A\cdot B=0$. Suppose that A contains a point x of H. There exists a domain D such that D contains B but $\overline{D}\cdot A=0$. Each point of the boundary β of D belongs to U; so there exist a finite collection K_1, K_2, \cdots, K_n of continua and a collection V_1, V_2, \cdots, V_n of domains such that V_1, V_2, \cdots, V_n covers β and for each $i, 1 \le i \le n$, $M-x \supset K_i \supset V_i$. Since by Corollary 2 of [8] (and the homogeneity of M) x does not cut any two domains from each other, there exists a

 $^{^{5}}$ An open subset of M is called a *domain*. A domain is not necessarily connected as used here.

continuum K in M-x which contains D. Hence M is a posyndetic at each point of B with respect to x. This is contrary to the definitions of B and U. Hence M-U is connected.

Let o be a point of H. Then $N_o = M - U$. Suppose on the contrary that q is a point of M-U not in N_o . If q cuts o from a point of U_q , then q cuts U_q from o. Let T be a homeomorphism of M onto itself carrying o into q.6 Evidently $T(U) = U_q$ and (by paragraph 3, T(H)taking the role of H) o belongs to T(H). Therefore o cuts q from U_q . But $U_q \cdot U \neq 0$ since both U and U_q are open, dense subsets of M; so o cuts q from a point of U. Hence q belongs to H. It follows that qcuts o from U and thus belongs to N_o . From this contradiction it is evident that no point q of $M-(U+N_o)$ cuts o from a point of U_q . Now let K be a continuum containing a domain V of U and lying in M-o. Since each point of N_o cuts every other point of N_o from U, K contains no point of N_o . Since no point of N_o cuts a point q of M $-(U+N_o)$ from a point of U, K may be assumed to contain a point of $M-(U+N_o)$. For each point q of $K \cdot [M-(U+N_o)]$ there exists a continuum C_q from V to o lying in M-q ($V \cdot U_q \neq 0$). Let F denote a finite collection of these continua, C_q , such that if p is a point of $K \cdot [M - (U + N_o)]$, some element of F lies in M - p. Suppose that some two continua C_q and C_t of F intersect in a continuum C containing no point of K. Then C_q+K and C_t+K are continua whose intersection is C+K which is not a continuum. Since M is hereditorily unicoherent, this is a contradiction. Hence C contains a point of K. Because M is hereditarily unicoherent, the same reasoning holds when we suppose that C is the common part of all elements of F. In this case $C \cdot K$ contains no point of M-U and hence is a subset of U. Then (M-U)+C and (M-U)+K are continua whose common part is $(M-U)+C\cdot K$ which is not connected. So $N_o=M-U$.

 $^{^{6}}$ Roughly stated the purpose of T is merely to shift the frame of reference from o to q, so that results already obtained for H and U will apply to similar sets constructed for q.

aposyndetic at y_i with respect to x_i , and this contradicts Theorem 1 of [7]. So G is upper-semicontinuous.

With respect to its elements as points, G is a continuum M'. Furthermore M' is homogeneous and aposyndetic. In such a continuum the meaning of "cut point" and "separating point" are the same [9]. Since M' contains a nonseparating point, every point of M' is a nonseparating point because of the homeogeneity. Let A and B denote distinct points of M' and let T denote a continuum in M' irreducible from A to B. Let X denote a point of T-(A+B). There exists in M'-X a continuum T_1 containing A+B. But M' is hereditarily unicoherent. So $T\cdot T_1$ is a subcontinuum of T containing A+B but not T. This is a contradiction and from this contradiction Theorem 1 follows.

THEOREM 2. If M is a homogeneous, bounded, plane continuum which does not separate the plane, M is indecomposable.

Theorem 2 follows immediately from Theorem 1.

The following question remains unanswered: Is every homogeneous, bounded, nondegenerate, plane continuum which does not separate the plane a pseudo-arc?

BIBLIOGRAPHY

- 1. Stefan Mazurkiewicz, Sur les continua homogènes, Fund. Math. vol. 5 (1924) pp. 137-146.
- 2. F. B. Jones, A note on homogeneous plane continua, Bull. Amer. Math. Soc. vol. 55 (1949) pp. 113-114.
- 3. H. J. Cohen, *Homogeneous plane continua*, Bull. Amer. Math. Soc. Abstract 55-7-422.
- 4. R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. vol. 15 (1948) pp. 729-742.
- 5. E. E. Moise, A note on the pseudo-arc, Trans. Amer. Math. Soc. vol. 64 (1949) pp. 57-58.
- 6. R. L. Moore, Concerning indecomposable continua and continua which contain no subsets that separate the plane, Proc. Nat. Acad. Sci. U.S.A. vol. 12 (1926) pp. 359-363, Theorem 4.
- 7. F. B. Jones, Concerning non-aposyndetic continua, Amer. J. Math. vol. 70 (1948) pp. 403-413.
- 8. R. H. Bing, Some characterizations of arcs and simple closed curves, Amer. J. Math. vol. 70 (1948) pp. 497-506.
- 9. G. T. Whyburn, Semi-locally-connected sets, Amer. J. Math. vol. 61 (1939) pp. 733-749, Theorem 6.21.

THE UNIVERSITY OF NORTH CAROLINA