THE EXTENDED CENTRALIZER OF A RING OVER A MODULE

R. E. JOHNSON

In a recent paper, K. Asano gave a new proof of the theorem that a domain of integrity has a right quotient ring if and only if every pair of nonzero elements has a common nonzero right multiple. His method of proof is used in the present work to extend the centralizer of a ring over a module to a system of semi-endomorphisms of the module. From this extension, necessary and sufficient conditions that a ring have a right quotient regular ring are derived.

Consider a given ring R, and a given nonzero right R-module M. Denote by \mathfrak{M} the set of all submodules of M, and by \mathfrak{M}^* the set of all submodules N of M having the property that $N \cap N' \neq 0$ for all nonzero $N' \in \mathfrak{M}$. Since $M \in \mathfrak{M}^*$, \mathfrak{M}^* is not void. It is easily seen that if N and N' are in \mathfrak{M}^* , then N+N' and $N \cap N'$ are also in \mathfrak{M}^* . Thus $\{\mathfrak{M}^*; \subseteq, \cap, +\}$ is a sublattice of the lattice $\{\mathfrak{M}; \subseteq, \cap, +\}$.

An R-homomorphism of N into M, N any element of \mathfrak{M} , is called a *semi-endomorphism* of M. Thus, thinking of the semi-endomorphism α as a left operator on N, we have $\alpha(x+y) = \alpha x + \alpha y$ and $\alpha(xa) = (\alpha x)a$ for all $x, y \in N$, $a \in R$. For convenience, the module N on which α is defined is denoted by M_{α} .

The set of all semi-endomorphisms of M is labeled with $\mathfrak A$. Contained in $\mathfrak A$ is the usual centralizer of R over M consisting of all $\alpha \in \mathfrak A$ for which $M_{\alpha} = M$. A partial ordering \leq is defined in $\mathfrak A$ as follows: $\alpha \leq \beta$ if and only if $M_{\alpha} \subseteq M_{\beta}$ and $\alpha x = \beta x$ for all $x \in M_{\alpha}$. The notation $\alpha < \beta$ is used in case $\alpha \leq \beta$ and $M_{\alpha} \neq M_{\beta}$.

In case \mathfrak{L} is a linearly ordered subset of \mathfrak{A} , and $M' = \bigcup M_{\alpha}$, $\alpha \in \mathfrak{L}$, the mapping γ of M' into M defined by

$$\gamma x = \alpha x$$
 whenever $x \in M_{\alpha}, \alpha \in \mathbb{R}$,

is easily verified to be an element of $\mathfrak A$ such that $\gamma \ge \alpha$ for all $\alpha \in \mathfrak R$. Thus, by Zorn's Lemma, every α of $\mathfrak A$ is contained in a maximal element of $\mathfrak A$. Let $\mathfrak B$ denote the set of all maximal elements of $\mathfrak A$. Obviously the centralizer of R over M is contained in $\mathfrak B$. For any $\beta \in \mathfrak B$, $M_{\beta} \in \mathfrak M^*$. Otherwise there would exist a nonzero $N \in \mathfrak M$ such that $N \cap M_{\beta} = 0$, and the semi-endomorphism α defined by

$$\alpha x = \beta x, \quad x \in M_{\beta}; \quad \alpha x = 0, \quad x \in N,$$

would exceed β .

Presented to the Society, April 28, 1951; received by the editors January 11, 1951.

¹ Journal of the Mathematical Society of Japan vol. 1 (1949) pp. 73-78.

For any α , $\beta \in \mathfrak{A}$, define $M_{\beta}^{\alpha} \in \mathfrak{M}$ by

$$M^{\alpha}_{\beta} = \{ x \mid x \in M_{\beta}, \beta x \in M_{\alpha} \}.$$

Observe that if M_{α} , $M_{\beta} \in \mathfrak{M}^*$, then also $M_{\beta}^{\alpha} \in \mathfrak{M}^*$. For if $N \in \mathfrak{M}$, $N \neq 0$, then $N \cap M_{\beta} \neq 0$; if $\beta(N \cap M_{\beta}) \neq 0$, then $\beta(N \cap M_{\beta}) \cap M_{\alpha} \neq 0$, $(N \cap M_{\beta}) \cap M_{\beta}^{\alpha} \neq 0$, and therefore $N \cap M_{\beta}^{\alpha} \neq 0$; if, on the other hand, $\beta(N \cap M_{\beta}) = 0$, then $N \cap M_{\beta} \subseteq M_{\beta}^{\alpha}$ and again $N \cap M_{\beta}^{\alpha} \neq 0$.

Operations of addition and multiplication are defined in $\mathfrak A$ in the obvious way. Thus for α , $\beta \in \mathfrak A$, $\alpha + \beta$ and $\alpha\beta$ are defined as follows:

$$(\alpha + \beta)x = \alpha x + \beta x, \ x \in M_{\alpha} \cap M_{\beta}; \ (\alpha \beta)x = \alpha(\beta x), \ x \in M_{\beta}.$$

By definition, $M_{\alpha+\beta} = M_{\alpha} \cap M_{\beta}$ and $M_{\alpha\beta} = M_{\beta}^{\alpha}$.

Associated with any $N \in \mathfrak{M}$ are the trivial semi-endomorphisms 0_N and 1_N defined by: $0_N x = 0$, $1_N x = x$; $x \in N$. Labelling $0_M = 0$ and $1_M = 1$, evidently $0_N \leq 0$ and $1_N \leq 1$ for all $N \in \mathfrak{M}$. For any $\alpha \in \mathfrak{A}$, $-\alpha$ is defined in the usual way; and $\alpha + (-\alpha) = (-\alpha) + \alpha = 0_N$ where $N = M_{\alpha} = M_{-\alpha}$.

Every $\alpha \in \mathfrak{A}$ that is an isomorphism of M_{α} into M has an inverse α^{-1} defined by

$$\alpha^{-1}(\alpha x) = x, \quad x \in M_{\alpha}; \qquad M_{\alpha^{-1}} = \alpha M_{\alpha}.$$

The set of all such isomorphisms contained in $\mathfrak A$ is denoted by $\mathfrak U$. It is evident that all $1_N \in \mathfrak U$, $N \in \mathfrak M$, and whenever $\alpha \in \mathfrak U$, also $\alpha^{-1} \in \mathfrak U$.

The properties enjoyed by the operations in $\mathfrak A$ are summarized in the following theorem.

THEOREM 1. The algebraic system $\{\mathfrak{A}; +, \cdot, \leq\}$ has the following properties:

(1) $\{\mathfrak{A}; +\}$ is an abelian semigroup with identity element 0. Associated with each $\alpha \in \mathfrak{A}$ are unique elements $-\alpha$ and 0_{α} in \mathfrak{A} such that

(i)
$$\alpha + (-\alpha) = 0_{\alpha}$$
, (ii) $\alpha + 0_{\alpha} = \alpha$, (iii) $-(-\alpha) = \alpha$.

- (2) $\{\mathfrak{A}; \cdot\}$ is a semigroup with identity element 1.
- (3) $\{\mathfrak{U}; \cdot\}$ is a semigroup with identity element 1. Associated with each $\alpha \in \mathfrak{U}$ are unique elements α^{-1} , 1_{α} , and $1'_{\alpha}$ in \mathfrak{U} such that

(i)
$$\alpha^{-1}\alpha = 1_{\alpha}$$
, (ii) $\alpha\alpha^{-1} = 1'_{\alpha}$, (iii) $\alpha 1_{\alpha} = \alpha$,

(iv)
$$1'_{\alpha} \alpha = \alpha$$
, (v) $(\alpha^{-1})^{-1} = \alpha$.

(4) For any α , β , $\gamma \in \mathfrak{A}$,

(i)
$$(\beta + \gamma)\alpha = \beta\alpha + \gamma\alpha$$
, (ii) $\alpha(\beta + \gamma) \ge \alpha\beta + \alpha\gamma$.

(5) For any α , β , γ , $\delta \in \mathbb{X}$ such that $\alpha \leq \beta$ and $\gamma \leq \delta$,

(i)
$$\alpha + \gamma \leq \beta + \delta$$
, (ii) $\alpha \gamma \leq \beta \delta$, (iii) $-\alpha \leq -\beta$,

(iv)
$$\alpha^{-1} \leq \beta^{-1}$$
 in case $\alpha, \beta \in \mathcal{U}$.

The proofs of (1)–(3) are straightforward, and hence will be omitted. Part (4) is a consequence of the following relations:

$$M_{\alpha}^{\beta+\gamma} = M_{\alpha}^{\beta} \cap M_{\alpha}^{\gamma}, \qquad M_{\beta+\gamma}^{\alpha} \supseteq M_{\beta}^{\alpha} \cap M_{\gamma}^{\alpha}.$$

To prove (5) part (iv), assume that α , $\beta \in U$ with $\alpha < \beta$. Then $M_{\alpha} \subset M_{\beta}$, $M_{\alpha} \neq M_{\beta}$, so that $\alpha M_{\alpha} \subset \beta M_{\beta}$, $\alpha M_{\alpha} \neq \beta M_{\beta}$, and hence $\alpha^{-1} < \beta^{-1}$. The proof of the rest of (5) will be omitted.

Let \Re be the subset of \Re containing all α such that $M_{\alpha} \in \Re^*$. The set \Re is closed under the operations of addition and multiplication in view of previous remarks. If in Theorem 1 we replace \Re by $\Re = \{\alpha \mid \alpha, \alpha^{-1} \in \Re^*\}$, Theorem 1 then applies to the system $\{\Re^*; +, \cdot, \leq \}$.

For any $\alpha \in \mathfrak{A}$, let $N_{\alpha} = \{x \mid x \in M_{\alpha}, \alpha x = 0\}$, the annihilator of α in M. The subset \mathfrak{S} of \mathfrak{R} defined by

$$\mathfrak{H} = \{ \alpha \mid \alpha \in \Re, N_{\alpha} \in \mathfrak{M}^* \}$$

is called the radical of \Re . Since $N_{\alpha-\beta}\supseteq N_{\alpha}\cap N_{\beta}$ and $N_{\gamma\alpha}\supseteq N_{\alpha}$, $\alpha-\beta$ and $\gamma\alpha$ are in \Im whenever $\alpha,\beta\in \Im$, $\gamma\in \Re$. That also $\alpha\gamma\in \Im$ for any $\alpha\in \Im$, $\gamma\in \Re$ is seen as follows. If $N\in \Re$, $N\neq 0$, then $N\cap M_{\gamma}\neq 0$. If $\gamma(N\cap M_{\gamma})=0$, then $N\cap M_{\gamma}\subseteq N_{\alpha\gamma}$ and $N\cap N_{\alpha\gamma}\neq 0$; while if $\gamma(N\cap M_{\gamma})\neq 0$, then $\gamma(N\cap M_{\gamma})\cap N_{\alpha}\neq 0$, $(N\cap M_{\gamma})\cap N_{\alpha\gamma}\neq 0$, and again $N\cap N_{\alpha\gamma}\neq 0$. We conclude that the radical \Im is an ideal in \Re . Another property of \Im is that if \Im 0 and \Im 1 are in \Im 2. This is obvious, since $N_{\alpha}=M_{\alpha}\cap N_{\beta}$ and $N_{\gamma}\supseteq N_{\beta}$.

The ideal \mathfrak{F} induces a partition of \mathfrak{R} into the set $\mathfrak{R}/\mathfrak{F}$ of cosets $\bar{\alpha} = \{\beta \mid \beta \in \mathfrak{R}, \alpha - \beta \in \mathfrak{F}\}, \alpha \in \mathfrak{R}$. The operations of addition and multiplication can be introduced into $\mathfrak{R}/\mathfrak{F}$ in the usual way, that is, if $\alpha + \beta = \gamma$ and $\alpha\beta = \delta$, then $\bar{\alpha} + \bar{\beta} = \bar{\gamma}$ and $\bar{\alpha}\bar{\beta} = \bar{\delta}$. One easily verifies that $\{\mathfrak{R}/\mathfrak{F}; +\}$ is an abelian group. By Theorem 1, (4), we see that $(\bar{\beta} + \bar{\gamma})\bar{\alpha} = \bar{\beta}\bar{\alpha} + \bar{\gamma}\bar{\alpha}$ and $\bar{\alpha}(\bar{\beta} + \bar{\gamma}) = \bar{\alpha}\bar{\beta} + \bar{\alpha}\bar{\gamma}$. Thus $\{\mathfrak{R}/\mathfrak{F}; +, \cdot\}$ is a ring with a unit element. This ring is called the *extended centralizer* of R over M.

THEOREM 2. The extended centralizer of R over M is a regular ring.

To prove this, it is necessary to show that for every $\bar{\alpha} \in \Re/\Im$, there exists $\bar{\beta} \in \Re/\Im$ such that $\bar{\alpha}\bar{\beta}\bar{\alpha} = \bar{\alpha}$. Let us assume that $\bar{\alpha} \neq 0$, from

which we can deduce that $N_{\alpha} \in \mathfrak{M}^*$. Consequently there exists a maximal element $N \in \mathfrak{M}$ such that $N \neq 0$, $N_{\alpha} \cap N = 0$, and $N \subseteq M_{\alpha}$. The maximality of N implies that $N_{\alpha} + N \in \mathfrak{M}^*$. Now α is an isomorphism of N into M, so there exists some $\beta \in \mathfrak{R}$ such that $\beta(\alpha x) = x$, $x \in N$. Evidently $(\alpha \beta \alpha)x = \alpha x$, $x \in N$; $(\alpha \beta \alpha)x = 0$, $x \in N_{\alpha}$, so that $\alpha \beta \alpha - \alpha \in \mathfrak{S}$. Thus $\bar{\alpha}\bar{\beta}\bar{\alpha} = \bar{\alpha}$ and the theorem follows.

The set of all submodules of M other than 0 is denoted by $\mathfrak{M}-(0)$.

COROLLARY. The extended centralizer of R over M is a division ring if and only if $\mathfrak{M}^* = \mathfrak{M} - (0)$.

If $N \cap N' \neq 0$ for every pair of nonzero submodules of M, then the radical \mathfrak{F} and \mathfrak{R} consists of the non-isomorphisms of \mathfrak{R} . If $\bar{\alpha}\bar{\beta}=0$, $\bar{\alpha}, \bar{\beta} \in \mathfrak{R}/\mathfrak{F}$, then either α or β is a non-isomorphism (since the product of isomorphisms is an isomorphism), that is, either $\bar{\alpha}=0$ or $\bar{\beta}=0$. Thus $\mathfrak{R}/\mathfrak{F}$ is a domain of integrity, and hence a division ring.

On the other hand, if $N \cap N' = 0$ for some pair of nonzero submodules of M, no loss of generality results from assuming that $N+N' \in \mathfrak{M}^*$. Then it is possible to find elements α , $\beta \in \mathfrak{R}$ with $N_{\alpha} = N$, $N_{\beta} = N'$, and $\alpha x = x$, $x \in N'$, $\beta x = x$, $x \in N$. Obviously $\bar{\alpha}$, $\bar{\beta} \neq 0$, while $\bar{\alpha}\bar{\beta} = 0$. This proves the corollary to Theorem 2.

In the ring R, let $I_a = \{x \mid x \in R, ax = 0\}$, the right annihilator of the element a of R. The element a of R is called (right) singular in case $I_a \cap I \neq 0$ for all nonzero right ideals I of R. The set S of all (right) singular elements of R is shown to be an ideal in much the same way that \mathfrak{F} is shown to be an ideal in \mathfrak{R} . We shall call S the (right) singular ideal of R.

If the ring R is a subring of the ring Q, Q is called a (right) quotient ring of R if Q has a unit element, and for every $\alpha \in Q$, $\alpha \neq 0$, there exist elements a, b in R with $b \neq 0$ such that $\alpha a = b$. If, in addition, Q is a regular ring, then Q is called a regular quotient ring of R.

Let us now show that a ring having a regular quotient ring Q has its singular ideal equal to zero. For every $\beta \in Q$, we denote by I_{β} the right annihilator of β in R; thus I_{β} is a right ideal in R. If $a \in R$, $a \neq 0$, there exists $\alpha \in Q$ such that $a\alpha a = a$. Evidently $\epsilon = \alpha a$ and $1 - \epsilon$ are idempotents, and $I_{\epsilon} = I_a$. If $I_a \neq 0$, $\epsilon \neq 1$ and $1 - \epsilon \neq 0$. By assumption, there exist c, $d \in R$ with $d \neq 0$ such that $\epsilon c = d$. Since $d \in I_{1-\epsilon}$, both I_{ϵ} and $I_{1-\epsilon}$ are unequal to zero. Certainly $I_{\epsilon} \cap I_{1-\epsilon} = 0$, and therefore a is not singular in R. Note that if $a \in R$ and $I_a = 0$, then $\alpha a = 1$; that is, the elements of R having no nonzero right annihilator have left inverses in Q.

A possible choice of a right R-module for any ring R is the additive group R^+ of R. Then the left multiplications of R, that is, the

mappings a' of R^+ defined by a'x = ax, $x \in R^+$, $a \in R$, are in the centralizer of R over R^+ . If α is a semi-endomorphism of R^+ , and $\alpha x = y$ for some $x, y \in R^+$, then it follows easily that $\alpha x' = y'$.

We now assume that the (right) singular ideal of R is zero, and that $M=R^+$. Then for any $a\in R$, $a\neq 0$, $N_{\alpha'}\in \mathfrak{M}$, and therefore $a'\in \mathfrak{H}$, the radical of \mathfrak{R} . As a matter of fact, if $\alpha\in \mathfrak{R}$, $\alpha M_{\alpha}\neq 0$, then $\alpha x=y\neq 0$ for some $x,y\in M$, and $\alpha x'=y'\in \mathfrak{H}$ so that $\alpha\in \mathfrak{H}$. It follows that the radical of \mathfrak{R} consists of all 0_N , $N\in \mathfrak{M}^*$, and that the elements of the extended centralizer Q are essentially the maximal semi-endomorphisms (since $\alpha\leq \beta$ implies $\bar{\alpha}=\bar{\beta}$) of M. Thus R is (isomorphic to) a subring of Q, and in view of Theorem 2, Q is a regular quotient ring of R. We have proved the following theorem.²

THEOREM 3. A ring R has a (right) regular quotient ring if and only if the (right) singular ideal of R is zero.

The extended centralizer Q of R over R^+ is the universal quotient ring of R in the sense that any quotient ring P of R is a subring of Q. For if $\alpha \in P$, $\alpha \neq 0$, α can be thought of as a semi-endomorphism of R^+ with $M_{\alpha} = I^+$ where $I = \{a \mid a \in R, \alpha a \in R\}$. Since $\alpha M_{\alpha} \neq 0$, P is a subring of Q.

In case R is a domain of integrity, its singular ideal is zero, and therefore R has a regular quotient ring Q. By the corollary of Theorem 2, Q is a division ring if and only if $\mathfrak{M}^* = \mathfrak{M} - (0)$, that is, if and only if $xR \cap yR \neq 0$ for every pair of nonzero elements $x, y \in R$. This yields the following corollary.

COROLLARY. Any domain of integrity R has a (right) regular quotient ring Q, and each nonzero element of R has a left inverse in Q. The ring Q is a division ring if and only if every pair of nonzero elements of R has a common nonzero right multiple.

SMITH COLLEGE

² O. Goldman, Bull. Amer. Math. Soc. vol. 52 (1946) p. 130, gives necessary and sufficient conditions that a ring be a subring of a regular ring.