THE EXTENDED CENTRALIZER OF A RING
OVER A MODULE

R. E. JOHNSON

In a recent paper,! K. Asano gave a new proof of the theorem that
a domain of integrity has a right quotient ring if and only if every
pair of nonzero elements has a common nonzero right multiple. His
method of proof is used in the present work to extend the centralizer
of a ring over a module to a system of semi-endomorphisms of the
module. From this extension, necessary and sufficient conditions
that a ring have a right quotient regular ring are derived.

Consider a given ring R, and a given nonzero right R-module M.
Denote by I the set of all submodules of M, and by IM* the set of
all submodules N of M having the property that NNN’0 for all
nonzero N’EM. Since M EM*, M* is not void. It is easily seen that
if N and N’ are in IM*, then N+ N’ and NNN’ are also in M*. Thus
{Mm*; €, N, +} is a sublattice of the lattice {M; S, N, +}.

An R-homomorphism of N into M, N any element of I, is called
a semi-endomorphism of M. Thus, thinking of the semi-endomorphism
a as a left operator on N, we have a(x+y) =ax+ay and a(xa) = (ax)a
for all x, y&E N, a€R. For convenience, the module N on which « is
defined is denoted by M,.

The set of all semi-endomorphisms of M is labeled with . Con-
tained in ¥ is the usual centralizer of R over M consisting of all €Y
for which M,= M. A partial ordering < is defined in ¥ as follows:
a =B if and only if M,E Mz and ax=Bx for all x&M,. The nota-
tion @ <f is used in case a =B and M, M;.

In case ¥ is a linearly ordered subset of %, and M'=UM,, aEYL,
the mapping ¥ of M’ into M defined by

yx = ax whenever x € M,, a € &,

is easily verified to be an element of ¥ such that y2a for all aEL.
Thus, by Zorn’s Lemma, every a of % is contained in a maximal ele-
ment of Y. Let B denote the set of all maximal elements of . Obvi-
ously the centralizer of R over M is contained in 8. For any BESD,
MsEIM*. Otherwise there would exist a nonzero NEM such that
NN Mg=0, and the semi-endomorphism « defined by

ax = Bx, x & Mg; ax =0, x&E N,
would exceed S.
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For any a, BEY, define Mz&M by
M;= {x| x € Mg, BxeM.,}.

Observe that if M., MpEM*, then also MzEM*. For if NS,
N#0, then NN Mg=0; if B3(NNMg) =0, then S(NNMg)N\M,#0,
(NN M)\ M550, and therefore NN Mg=0; if, on the other hand,
B(NNMp) =0, then NN\ MzCS M5 and again NN Mg#=0.

Operations of addition and multiplication are defined in ¥ in the
obvious way. Thus for a, BE¥, a+8 and of are defined as follows:

(a4 B)x = ax + Bx, s €E Mo N\ Ms; (aB)x = a(Bx), x E Mj.

By definition, M,1p= M.\ Mg and M.z= Mj.

Associated with any NEI are the trivial semi-endomorphisms Oy
and 1y defined by: Oyx=0, 1yx=x; xEN. Labelling 0x=0 and
1y =1, evidently Oy <0 and 1¥=<1 for all NEI. For any a €N, —«
is defined in the usual way; and a+4(—a)=(—a)+a=0y where
N=M,=M_,.

Every a €Y that is an isomorphism of M, into M has an inverse
a1 defined by

allax) =%, xE M, M= aM,.

The set of all such isomorphisms contained in U is denoted by U. It
is evident that all 1yEU, NEI, and whenever €, also a1 €.

The properties enjoyed by the operations in % are summarized in
the following theorem.

THEOREM 1. The algebraic system {¥; +, -, <} has the following
properties:

M {; +} is an abelian semigroup with identity element 0. Asso-
clated with each a €N are unique elements —o and 0, 18 A such that

() a+ (—a) =0, () a+0s=a (i) —(—a)=a

(2) {21; - 15 @ semigroup with identity element 1.
3) {11; - | 15 a semigroup with identity element 1. Associated with
each a € are unique elements o1, 1., and 1., in U such that

() ala=1, i) al=1/, (iii) alg=aq,
iv) lda=a (v) (V) !=a.

(4) For any o, B, vyEY,
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i) B+ve=pa+rya, (i) aB+7)2aB+ ar
(8) For any «a, 3, v, 662[ such that a <8 and y <9,

(i at+tys=p+s () ey=p, (i) —as -4
(iv) a 1= 87! incase o, 8 E 1.

The proofs of (1)—(3) are straightforward, and hence will be omitted.
Part (4) is a consequence of the following relations:

=M, M., 2 MiN M

To prove (5) part (iv), assume that @, BEU with a<B. Then
M.C Mg, M, 5 Mg, so that aM,CBMs, aM,#BMs, and hence a!
< B~ The proof of the rest of (5) will be omitted.

Let & be the subset of A containing all & such that M,EM*.
The set & is closed under the operations of addition and multiplica-
tion in view of previous remarks. If in Theorem 1 we replace Ul by
L= {a|a}, a~'€UNRK}, Theorem 1 then applies to the system{f;
+’ Ty =9

For any a€Y, let N,= {xleMa, ax=0}, the annihilator of
in M. The subset  of & defined by

9 ={a|a€ 8 N, €M}

is called the radical of R. Since N,_s2NN\Ngand N,,DON,, a—f and
Ya are in § whenever a, BEPD, yER. That also ayE P for any aE P,
YER is seen as follows. If NEM, N0, then NNM,=0. If
Y(NNM,) =0, then NN\M,C N,, and NN N,,#0; while if y(NNM,)
#0, then y(NNM,)NN,#0, (NNM,)NN,,#0, and again NN N,,
#0. We conclude that the radical 9 is an ideal in ®. Another prop-
erty of ® is that if BEP and o, yER with a B =<7, then a and ¥
are in . This is obvious, since N,= M, NNz and N,DNj;.

The ideal $ induces a partition of & into the set /9 of cosets
a={B|BER, a—BEH}, aER. The operations of addition and mul-
tiplication can be introduced into £/9 in the usual way, that is,
if a+B=+v and af =38, then @a+B=% and af=4. One easily verifies
that {R/9; + } is an abelian group. By Theorem 1, (4), we see that
(B+7)a=PBa+va and a(f+7)=af+ay. Thus {R/9; +, -} isa
ring with a unit element. This ring is called the extended centralizer
of R over M.

THEOREM 2. The extended centralizer of R over M is a regular ring.

To prove this, it is necessary to show that for every a&f/9,
there exists BE 8/ 9 such that afa=a. Let us assume that &0, from
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which we can deduce that N.&M*. Consequently there exists a
maximal element NEM such that N0, N,N=0, and NCM,.
The maximality of N implies that N,+NEIMM*. Now « is an iso-
morphism of N into M, so there exists some 8& & such that B(ax) =x,
xEN. Evidently (afa)x=ax, xEN; (afa)x=0, xEN,, so that
afa—a & 9. Thus afa=a and the theorem follows.

The set of all submodules of M other than 0 is denoted by It — (0).

COROLLARY. The extended centralizer of R over M is a division ring if
and only if M*=M— (0).

If NNN’#0 for every pair of nonzero submodules of M, then the
radical § and ® consists of the non-isomorphisms of &. If af=0,
a, BER/ Y, then either a or B is a non-isomorphism (since the product
of isomorphisms is an isomorphism), that is, either a=0 or f=0.
Thus /9 is a domain of integrity, and hence a division ring.

On the other hand, if NNN’=0 for some pair of nonzero sub-
modules of M, no loss of generality results from assuming that N+ N’
EM*. Then it is possible to find elements @, BERK with N, =N,
Ng=N’, and ax=x, xEN’, Bx=x, xEN. Obviously &, 0, while
af =0. This proves the corollary to Theorem 2.

In the ring R, let I,= {xleR, ax=0}, the right annihilator of
the element a of R. The element a of R is called (right) singular in
case I,NI#0 for all nonzero right ideals I of R. The set S of all
(right) singular elements of R is shown to be an ideal in much the
same way that § is shown to be an ideal in & We shall call S the
(right) singular ideal of R.

If the ring R is a subring of the ring Q, Q is called a (right) quotient
ring of R if Q has a unit element, and for every a&(Q, a0, there
exist elements a, b in R with 50 such that ae=5. If, in addition,
Q is a regular ring, then Q is called a regular quotient ring of R.

Let us now show that a ring having a regular quotient ring Q has its
singular ideal equal to zero. For every B&Q, we denote by I the right
annihilator of B in R; thus I is a right ideal in R. If a ER, a#0,
there exists a €Q such that aaa=a. Evidently e=aa and 1—e¢ are
idempotents, and I.=1I, If I,0, e£1 and 1—es£0. By assump-
tion, there exist ¢, dER with d#0 such that ec=d. Since dE€ 1,
both I. and I;.. are unequal to zero. Certainly I.NI,_.=0, and
therefore a is not singular in R. Note that if aER and I,=0, then
aa =1; that is, the elements of R having no nonzero right annihilator
have left inverses in Q.

A possible choice of a right R-module for any ring R is the addi-
tive group Rt of R. Then the left multiplications of R, that is, the
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mappings @’ of R* defined by a’x =ax, xER*, a ER, are in the cen-
tralizer of R over Rt. If a is a semi-endomorphism of R+, and ax=1y
for some x, yER*, then it follows easily that ax’=y".

We now assume that the (right) singular ideal of R is zero, and
that M =R*. Then for any aER, a0, N, EM, and therefore
a’ & 9, the radical of . As a matter of fact, if aER, aM,0, then
ax =970 for some x, yE M, and ax’ =y'E 9 so that aF . It follows
that the radical of & consists of all Oy, NEIM*, and that the elements
of the extended centralizer Q are essentially the maximal semi-endo-
morphisms (since @ =B implies @=8) of M. Thus R is (isomorphic to)
a subring of Q, and in view of Theorem 2, Q is a regular quotient ring
of R. We have proved the following theorem.?

THEOREM 3. A ring R has a (right) regular quotient ring if and only
if the (right) singular ideal of R is zero.

The extended centralizer Q of R over R* is the universal quotient
ring of R in the sense that any quotient ring P of R is a subring of Q.
For if a € P, a0, a can be thought of as a semi-endomorphism of R+
with M, =I* where I = {a|aER, aa €R}. Since aM, 0, P is a sub-
ring of Q.

In case R is a domain of integrity, its singular ideal is zero, and
therefore R has a regular quotient ring Q. By the corollary of Theorem
2, Q is a division ring if and only if M* = — (0), that is, if and only
if xRMyR #0 for every pair of nonzero elements x, yER. This yields
the following corollary.

COROLLARY. Any domain of integrity R has a (right) regular quotient
ring Q, and each nonzero element of R has a left inverse in Q. The ring Q
s a division ring if and only if every pair of nonzero elements of R has a
common nonzero right multiple.

SmiTH COLLEGE

% O. Goldman, Bull. Amer. Math. Soc. vol. 52 (1946) p. 130, gives necessary and
sufficient conditions that a ring be a subring of a regular ring.



