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In a recent paper,1 K. Asano gave a new proof of the theorem that

a domain of integrity has a right quotient ring if and only if every

pair of nonzero elements has a common nonzero right multiple. His

method of proof is used in the present work to extend the centralizer

of a ring over a module to a system of semi-endomorphisms of the

module. From this extension, necessary and sufficient conditions

that a ring have a right quotient regular ring are derived.

Consider a given ring R, and a given nonzero right i?-moduIe M.

Denote by 3JÎ the set of all submodules of M, and by SDÎ* the set of

all submodules N oí M having the property that NÍ^N't^O for all

nonzero TV'GSOî- Since ME^R*, SDÎ* is not void. It is easily seen that

if N and N' are in M*, then N+N' and NC\N' are also in Stt*. Thus

{9ÏÏ*; Q, r\, +} is a sublattice of the lattice {W; Q, C\, + }.
An i?-homomorphism of N into M, N any element of SO?, is called

a semi-endomorphism of M. Thus, thinking of the semi-endomorphism

a as a left operator on N, we have a(x+y) =ax+ay and a(xa) = (ax)a

for all x, yEN, aER- For convenience, the module N on which a is

defined is denoted by Ma.

The set of all semi-endomorphisms of M is labeled with 31. Con-

tained in 21 is the usual centralizer of R over M consisting of all a E 21

for which Ma = M. A partial ordering = is defined in 2Í as follows:

a^ß if and only if MaÇZMp and ax=ßx for all xEMa. The nota-

tion a<ß is used in case a=ß and Maj^Mß.

In case ? is a linearly ordered subset of 21, and M' = [)Ma, «GS.

the mapping 7 of M' into M defined by

7X = ax   whenever    x G Ma, a E2,

is easily verified to be an element of 21 such that y=a for all aE2-

Thus, by Zorn's Lemma, every a oí 21 is contained in a maximal ele-

ment of 21. Let 58 denote the set of all maximal elements of 21. Obvi-

ously the centralizer of R over M is contained in S3. For any /3G33,

MßE'HR*- Otherwise there would exist a nonzero NEWl such that

Nf~\Mß = 0, and the semi-endomorphism a defined by

ax = ßx,    x E Mß-,       ax = 0,    x E N,

would exceed ß.
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For any a, ßE21, define M%E3R by

a Í       I )

Mß = \x\ x E Mß, ßx E Ma\.

Observe that if Ma, MßEffl*, then also M%EW*. For if NEW,
N^O, then Nr\Mß?*0; if ß(Nf\Mß)^0, then ß(NC\Mß)r\Ma^Q,
(Nr\Mß)r\Maß?±0, and therefore Ni^M^O; if, on the other hand,
ß(NC\Mß) =0, then NC\Mß^Maß and again ATilf^O.

Operations of addition and multiplication are defined in 21 in the

obvious way. Thus for a, /3£2I, a+ß and aß are defined as follows:

(a + ß)x = ax + ßx, x E Ma r\ Mß;    (aß)x = a(ßx), x E Mß.

By definition, Ma+ß = Mar\Mß and Maß = Mß.

Associated with any NEW are the trivial semi-endomorphisms On

and ljv defined by: 0atX = 0, 1jvX = x; xEN. Labelling 0m = 0 and

ljf=l, evidently 0^0 and ÍN£Í for all NEW. For any «£21, -a
is defined in the usual way; and a + ( — a) = ( — a)+a = 0t{ where

N=Ma = M-a.

Every aG2í that is an isomorphism of Ma into M has an inverse

a~l defined by

a_1(ax) = x,    x E Ma;       Ma-1 = aMa-

The set of all such isomorphisms contained in 21 is denoted by U. It

is evident that all l^GU, NEW, and whenever aGU, also a-1£U.

The properties enjoyed by the operations in 21 are summarized in

the following theorem.

Theorem 1. The algebraic system {21; +, -, á } has the following

properties :

(1) {2Í; +} is an abelian semigroup with identity element 0. Asso-

ciated with each a E21 are unique elements —a and 0a in 21 such that

(i)    a + (-a) = 0a, (ii)    a + 0a = a,        (iii)     —(-a) = a.

(2) {21; • } is a semigroup with identity element 1.

(3) {U; • } is a semigroup with identity element 1. Associated with

each aEVL are unique elements a~l, la, and l'a in U such that

(i)      a-1a = 1„,        (ii)      aa"1 = IJ,        (iii)    ala = a,

(iv)     la'a! = a,       (v)      (a"1)"1 = a.

(4)  For any a, ß, 7G21,
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(i)    (ß + y) a = ßa + ya,        (ii)    a(ß + y) = aß + cry.

(5) For any a, ß, y, 5G2I such that a^ß and y^8,

(i)       a + y = ß + 8, (ii)    ay = ß8,        (iii)     -« g - ft

(iv)    a-1 i£ ß~l in case a, ß G U.

The proofs of (l)-(3) are straightforward, and hence will be omitted.

Part (4) is a consequence of the following relations:

m!+t = MÍ C\ Ml,       Maß+y 2 MßC\ M".

To prove (5) part (iv), assume that a, ßEU with a<ß. Then

MaEMß, Ma^Mß, so that aMaEßMß, aMa^ßMß, and hence a-1

<ß~1. The proof of the rest of (5) will be omitted.

Let $ be the subset of 21 containing all a such that MaE'SSl*-

The set $ is closed under the operations of addition and multiplica-

tion in view of previous remarks. If in Theorem 1 we replace U by

33 = \a\a, a-1GUn^}, Theorem 1 then applies to the system{$;

+ , -, £}•

For any aG2l, let Na= {x\xEMa, ax = 0}, the annihilator of a

in M. The subset § of $ defined by

©=  {a\aE   ®,NaEWl*}

is called the radical of $. Since Na-ß^Nai^Nß and NyaZ2 N„, a— ß and

ya are in ^ whenever a, ßEfe, 7GÄ. That also ayE& for any «G§,

7GÄ is seen as follows. If iVGSDÎ, iWO, then iVHAf^O. If
y(NC\My) =0, then iVni^czA^and Ni\Nay^0; while if y(N(~\My)
¿¿0, then 7(iVrr\Af7)niV<,5¿0, (Nr\My)i\Nay^0, and again Ni~\Nay

5^0. We conclude that the radical § is an ideal in $. Another prop-

erty of § is that if /3G§ and a, 7GÄ with a=ß^y, then a and 7

are in §. This is obvious, since Na = MaC\Nß and Ny~DNß.

The ideal § induces a partition of Ä into the set $/§ of cosets

5 = {ß\ßE®, a—ßE^}, «6fi. The operations of addition and mul-

tiplication can be introduced into $/§ in the usual way, that is,

if a+ß=y and aß = 8, then ä+ß = y and 5/3 = 5. One easily verifies

that {$/£>; + } is an abelian group. By Theorem 1, (4), we see that

(ß+y)ä = ßä+yä and ä(ß+y)=äß+äy. Thus {$t/&; +, ■} is a

ring with a unit element. This ring is called the extended centralizer

of R over M.

Theorem 2. The extended centralizer of R over M is a regular ring.

To prove this, it is necessary to show that for every 5G$A?,

there exists ßE®/& such that 5/35 = 5. Let us assume that 5?*0, from
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which we can deduce that NaEW*. Consequently there exists a

maximal element NEW such that A^O, Nar\N = 0, and NÇlMa.

The maximality of N implies that Na + NEW*. Now a is an iso-

morphism of N into M, so there exists some ßE® such that ß(ax) = x,

xEN. Evidently (aßa)x = ax, xEN; (aßa)x = 0, xENa, so that

aßa — aE&- Thus 5/35 = 5 and the theorem follows.

The set of all submodules of iii other than 0 is denoted by W — (0).

Corollary. The extended centralizer of R over M is a division ring if

andonlyifW* = W-(0).

If Nr\N'^0 lor every pair of nonzero submodules of M, then the

radical § and $ consists of the non-isomorphisms of $. If äß = 0,

5, ßE®/tQ, then either a or ß is a non-isomorphism (since the product

of isomorphisms is an isomorphism), that is, either 5 = 0 or ß = 0.

Thus $/§ is a domain of integrity, and hence a division ring.

On the other hand, if NC\N' = 0 lor some pair of nonzero sub-

modules of M, no loss of generality results from assuming that N+N'

EW*. Then it is possible to find elements a, ßE$ with Na = N,

Nß = N', and ax = x, xEN', ßx = x, xEN. Obviously 5, /S^O, while

5/3 = 0. This proves the corollary to Theorem 2.

In the ring R, let Ia= {x|x£P, ox = 0}, the right annihilator of

the element a of R. The element a of R is called (right) singular in

case Ial^I^O for all nonzero right ideals I of R. The set S of all

(right) singular elements of R is shown to be an ideal in much the

same way that ^ is shown to be an ideal in Ä. We shall call S the

(right) singular ideal of R.

If the ring R is a subring of the ring Q, Q is called a (right) quotient

ring of R if Q has a unit element, and for every aEQ, a¿¿0, there

exist elements a, b in R with b^Q such that aa = b. If, in addition,

Q is a regular ring, then Q is called a regular quotient ring of R.

Let us now show that a ring having a regular quotient ring Q has its

singular ideal equal to zero. For every ßEQ, we denote by Iß the right

annihilator of ß in R; thus Iß is a right ideal in R. If aER, a^O,

there exists aEQ such that aaa = a. Evidently t = aa and 1—€ are

idempotents, and It = Ia. If h^O, e^l and 1 —c?=0. By assump-

tion, there exist c, dER with d¿¿0 such that ec = d. Since dEIi-t,

both 7e and 7i_e are unequal to zero. Certainly /en/i_e = 0, and

therefore a is not singular in R. Note that if aER and 7o = 0, then

aa = 1 ; that is, the elements of P having no nonzero right annihilator

have left inverses in Q.

A possible choice of a right P-module for any ring R is the addi-

tive group Pv+ of R. Then the left multiplications of R, that is, the
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mappings a' of R+ defined by a'x = ax, xER+, aER, are in the cen-

tralizer of R over R+. If a is a semi-endomorphism of R+, and ax = y

for some x, yER+, then it follows easily that ax'=y'.

We now assume that the (right) singular ideal of R is zero, and

that M = R+. Then for any aER, a^O, Na-EW, and therefore

#'££€>, the radical of $. As a matter of fact, if aGI, aMa^O, then

ax=y^0 for some x, yEM, and ax' =y'E& so that aE&- It follows

that the radical of $ consists of all Ojy, NEW*, and that the elements

of the extended centralizer Q are essentially the maximal semi-endo-

morphisms (since a^ß implies 5 = /3) of M. Thus R is (isomorphic to)

a subring of Q, and in view of Theorem 2, Q is a regular quotient ring

of P. We have proved the following theorem.2

Theorem 3. A ring R has a (right) regular quotient ring if and only

if the (right) singular ideal of R is zero.

The extended centralizer Q of R over R+ is the universal quotient

ring of R in the sense that any quotient ring P of R is a subring of Q.

For if aEP, a9^0, a can be thought of as a semi-endomorphism of R+

with Ma = I+ where /= {a\ aER, aaER}. Since aMa5¿0, P is a sub-

ring of Q.

In case R is a domain of integrity, its singular ideal is zero, and

therefore R has a regular quotient ring Q. By the corollary of Theorem

2, Q is a division ring if and only if W* = W — (0), that is, if and only

if xRi^yR^O lor every pair of nonzero elements x, y ER- This yields

the following corollary.

Corollary. Any domain of integrity R has a (right) regular quotient

ring Q, and each nonzero element of R has a left inverse in Q. The ring Q

is a division ring if and only if every pair of nonzero elements of R has a

common nonzero right multiple.
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* O. Goldman, Bull. Amer. Math. Soc. vol. 52 (1946) p. 130, gives necessary and

sufficient conditions that a ring be a subring of a regular ring.


