
THE FIRST VARIATION OF AN INDEFINITE
WIENER INTEGRAL

ROBERT H. CAMERON

1. Introduction. It is the purpose of this paper to obtain a formula

for 8G when G is the indefinite Wiener integral

(1) G(u) =   I F(x)dwx.

Here x is understood to be a variable point in the Wiener space C of

continuous functions x(t) defined on Q=t = \ and vanishing at 2 = 0.

The integration is performed over the set S« of elements x(t) of C

which satisfy for all t the inequality

x(t) g u(t).

The function u(t) need not be a member of C, but can be any Borel

measurable function defined on OSj/^1, and may even be permitted

to take on infinite values.

The Wiener integral of a functional is simply the Lebesgue integral

of the functional with respect to Wiener's measure [4]1 in C. This

measure is not invariant under translations, but is in other respects

a Lebesgue measure based on intervals of the form

/: a, < x(tj) < ßj (where 0 < h < t2 < - ■ ■ < t» á 1),

having the measure

1 /.ft, ffl l     íi
mw(I) = - I       • • •   I     exp < — —

(irnh(t2 -h)--- (tn - tn-i)y2 Jan Jai     M     h

(ft -  fl)2 (f. - fn-l)2

h — h

rn-fn-l)2\

U - k-1     f
dfi • • • df».

We denote the Wiener integral of a measurable functional P(x) over

a measurable set SEC by

/.

w

F(x)dwx.
' s

In case S is not contained in C but SC is measurable, we define
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F(x)dwX =   I     F(x)dwx.
s J se

In addition to finding bG when G is given by (1), we shall also find

certain transformation formulas for Wiener integrals taken over the

whole of C. In particular, we shall obtain what may be considered as

a formula for integration by parts in function space.

Finally, we show that these formulas may be used to evaluate

certain Wiener integrals. As an example we show that

(2) f    flog   f   a(t)e*(»dt\x(s)dwx =

when 0<5<1, if a(t) is non-negative and of class Zi and not equiva-

lent to zero onj^i = l.

2. Sub-summable functionals.

Definitions. Let f(u) be a real or complex function defined on a

set S of an abstract space in which a measure is defined. Then f(u) will

be called "sub-summable" on S if there exists a function g(u) which is

summable on a measurable set S containing S and satisfies on S the

inequality \f(u)\ úg(u).
It is clear that if f(u) is also measurable on S, then it is summable

on 5 (and, of course, 5 is also measurable).

Lemma. Let yo(t)EC be absolutely continuous and have a derivative

y ó (t) which is essentially of bounded variation2 on [0, 1 ] ; let S be a

Wiener measurable subset of C; and for each positive X let Sx be the set

of all x(t) of the form u(t)+hy0(t), where uES and \h\ ^X. Let e>0,
v > 0 and let F(x) be a functional defined on St+rl such that

'(3) sup   | F(x + hyo) |

is sub-summable on S '. Then if P(w) is any polynomial, it follows that

there exists vi > 0 for which

sup    | F(x + hyo)

(4)      "IS*

exp J2r,i   f yi(t)dx(t) Ytp(( y¡ (t)dx(tyj

is sub-summable on S •

2 Here and elsewhere in this paper the requirement that a function be "essentially

of bounded variation" can be replaced by the requirement that it be "of class L2"

if Stieltjes integrals are interpreted as Paley-Wiener-Zygmund integrals [3, l].
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For the proof, choose r;2>0 so that 7?2<e and r¡2<r¡/2, and apply

the translation theorem [2 ; 1 ] to a functional G(x) which is summable

on a measurable set containing Se and which satisfies on Se

(5) G(x) =  sup   | F(x + hyo) |.

We translate by ??2yo and also by — r¡2yo, and obtain

f _ G(x)dwx = exp Í- vl f   [y¿ (t)]2dx(t)\

(6)

I     G(x ± r¡2yo) exp < + 2i72 I    yó (t)dx(t) > dwx.

Here the existence of the first member follows from the fact that we

are integrating over a measurable subset of S % and the existence of

the second follows from that of the first by the translation theorem.

Moreover, since 2r\2<-n, we have by (5) for x£S and for both upper

and lower signs,

sup    | F(x + hyo) | = G(x ± -n2yo),

and hence it follows from the existence of the Wiener integral in the

second member of (6) that

sup    | F(x + Ayo) i exp  < ± 2t?2 I    yó (t)dx(t)>
l»lái2 \ Jo )

is sub-summable on S- Thus the maximum of these two functionals

is also sub-summable; that is,

sup    | F(x + hyo) | exp  <2tj2        y0' (t)dx(t) \>
W&v, K     ¡Jo \)

is sub-summable on S • The sub-summability of (4) on S follows im-

mediately for positive 77i<?;2, and hence the lemma is established.

3. The first variation of a Wiener integral and vice versa.

Theorem I. Let y0(t)EC be absolutely continuous and have a deriva-

tive y ó (t) which is essentially of bounded variation2 on 0 = t — l, and let

F(x) be a Wiener summable functional over the set S «0+2ti where Uo(t)

is Bor el measurable on 0 = / = l (and may even be infinite there), «>0,

and

S„: x(t) % u(t), 0 = l = l;xEC.
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Let F(x) have a first variation

(7) bF m bF(x | yo) =—F(x+ hyo)]
dh J h=0

for all xES>u„+2i. Then if 0<v max os<gi |yo(<)| ú^ and

(8) sup   | bF(x + hyo | yo) \
Wir,

is Wiener sub-summable in x on Su„+t, it follows that the functional

(9) G(u) =  I F(x)dwx
J  !(<) = «(')

has a first variation

i d 1
(10) bG = bG(u | yo) =—G(u+ hy0)

dh J /l=o

whenever m(í)=Wo(¿) on 0 = /^l and u is Borel measurable. Moreover

the value of the variation is given by the following integrals (which neces-

sarily exist) :

rw
.) = I        <

J i(í)Su(í)

2 f F(x)\ f   yo (¿)á*(<)~k
J i(oS«(t)        L J o J

bG(u I yo) =   | bF(x I yo)dwx

(11)

iwx.
»(

For the proof, we note that if x+hyoESu,t+i„

di d H
bF(x + hyo | yo) = — F(x + hyo + \yo)

d\ J x=o

"- F(x + pyoA       = ^ F(x + hy0) ;
d Id

— F(x + pyo) = —
dp J n=h      dh

and since the first member of this equation exists, so does the last.

Again, it is clear that S„+¡í is convex, so that if x£S«+2< and

x+AyoGS«+2e, we have x+0hy0ESu+2t for all 6 in 0=^0= 1. Thus by

the law of the mean we obtain F(x+hy0) = F(x)+hbF(x+dhyo\yo)

for some 6 in 0 <9 < 1 depending on h. Hence it follows from the sub-

summability of (8) and of F(x) that

(12) sup   | F(x + hyo) \
l»läi

is sub-summable on S «„+«•
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Now for \h\ ^rj and u a Borel measurable function satisfying

u(t) —Uo(t), we have by the translation theorem (which guarantees the

existence of the last member)

G(u + hyo) =  | F(x)dwx
t)Eë.

-Í
= exp j- h2 j   [yó(t)]2dX f   F(x+ hyo)

•exp    — 2h I    y¿ (t)dx(t) \dwx.

Differentiating formally with respect to h and then setting h = 0, we

obtain

i d 1
8G(u I y0) = —G(u + hyo)

dh Jh=0

(13) .expT- 2h f  yó(t)dx(t)\\\     dwx

rw    i
=   I     8F(x I y0)dwx

-2\     F(x)\    [   y¿(t)dx(t)\dwx.

To justify this differentiation under the integral sign (and incidentally

show that all members of (13) exist), we must show that the dif-

ferentiated integrand is dominated for small A by a summable func-

tional; that is, we must show that

sup    <8F(x + hyo | y0) - 2F(x + hy0) f   y0' (f)dx(t)\
lÄlSi! \ { Jo f

•exp <{- 2A j    y¿(t)dx(t)i\

is sub-summable on S« for some 771 >0. But it follows from the sub-

summability of (8) on S«0+< and the lemma that for some jj2>0

sup    I 8F(x + hyo | yo) \ exp \2-q2\ f    yó(t)dx(t) \>
|ä|Sis v.       \Jo \)

(14)
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is sub-summable on S „0. Similarly it follows from the sub-summabil-

ity of (12) on §„„+« and the lemma that for some »73 >0,

sup    \F(x+hy0)\ exp ¡2ri3\ f   y¿ (t)dx(t) \\\ \    y¿(t)dx(t)
IMS», I      \J<¡ 11 \ Jo

is sub-summable on §„,. Taking ?ji = min (772, 773), we obtain the sub-

summability of (14) on S«CS«0 and hence the justification of (13),

including the existence of all its members. Thus the theorem is

established.

An important special case of Theorem 1 is obtained if u(t)=uo(t)

= + 00, so that we integrate over the whole space C. In this case also

u(t)+hyo(t) = + °° and G(u + hyo) is constant and bG(u\y0) =0. We

state the result as a separate theorem.

Theorem II. Let yo(t) be absolutely continuous and have a derivative

y ó (t) which is essentially of bounded variation2 on 0 = ¿^1, and let

F(x) be a Wiener summable functional over C. Let F(x) have a first

variation 8F = bF(x\ y0) for all xEC such that

sup   I bF(x + hyo I yo) |
1*1 S*

is Wiener summable in x on C for some 77 > 0. Then it follows that

(15) f   bF(x I yo)dwx = 2 f   F(x) |   f   y„' (0¿*(ol dwx.

As a corollary to Theorem II we obtain a formula for "integration

by parts in function space." We replace P(x) by F(x)G(x).

Corollary. Let y0(t) be absolutely continuous and have a derivative

y ó (t) which is essentially of bounded variation2 on 0^/^l, and let

F(x) and G(x) be Wiener measurable functionals on C such that

F(x)G(x) is Wiener summable on C. Let F and G have first variations bF

and bG such that

G(x) sup   I bF(x + hyo | yo) |  and F(x) sup   | bG(x + ky0 \ y0) |

are Wiener summable in x on C for some n>0. Then it follows that

X
w

F(x)bG(x I yo)dwx
c

f   G(x) \2F(x) f  y¿ (t)dx(t) - bF(x \ y0) ]dwx.
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4. The Wiener integral of a Volterra derivative.

Theorem III. Let F(x) be a Wiener summable functional such that

F(x) maxosíái |x(/)| is also Wiener summable, and such that the first

variation

i à 1
(16) 8F = 8F(x [ y) = — F(x + hy)

dh J h=o

exists for all x and y in C and is expressible in the form

(17) 8F(x\ y) =  f F'(x\t)y(t)dt,
Jo

where F'(x\t) is measurable in the product space of x and t as well as

summable in tfor each x. (It is clear that F'(x\ t) is the Volterra deriva-

tive of F(x) at each point (x, t) of the product space for which F'(x|/)

is continuous in (x, t).) Assume also that for each y(t) EC there exists a

corresponding number tj =i)(y) >0 such that

(18) sup        | F'(x + hy\t)\
!»la»,oS¡ái

is Wiener summable in x on C. Then it follows that fc'F(x)x(t)dwx

has an absolutely continuous derivative with respect to t for 0=t = \,

and this derivative vanishes at t = i. Moreover

rw d2 rw
(19) I     F'(x\t)dwx = - 2- j     F(x)x(t)dwx

J c dt2 J c

for almost all t on 0 = i^l, and, in particular, for each tfor which the

left member is continuous. Specifically, (19) holds for each t for which

F'(x|/) is continuous in tfor almost all x in C.

We shall prove that this theorem holds even when we weaken the

hypotheses (16), (17), (18) by assuming that they hold not for all y

in C, but only for a sequence of values of y, namely y = yn

(n = 1, 2, • • • ), where each yn(t) has an absolutely continuous deriva-

tive yñ (t) and satisfies y„(0) =yn' (1) =0, and where the set of second

derivatives |yñ'(0} 1S closed in L2 on 0 — t — i. Then if ||y||

= maxosfsi |y(0|> we have by (17) for each n = \, 2, ■ ■ ■ the in-

equality

(20) sup    \SF(x+ hyn\ yn)\ = ||y„||-       sup        | F'(x + hyn | t) |,

where r¡n denotes i?(yn). Thus for each n, (18) and (20) imply that
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the hypotheses of Theorem II hold with yn replacing y0, and we have

from (15),

f    bF(x | yn)dwx = 2 J     F(x)\   j    yn' (t)dx(t) \dwx.

Integrating by parts in the right member, remembering that x(0)

= Vn (1)=0, and using (17) in the left member, we obtain

J        J    F'(x\t)yn(t)dt\dwx

= -2|     F(x)\   j    x(t)yl'(t)dt\dwx.

Since by hypothesis F(x) ■ ||x|| is summable, we may apply the Fubini

theorem to the right member, and since (18) is summable we may

apply it to the left member. Thus

(21) f   yn(t)*(i)dt = -2 f   yl'(t)dl f   F(x)x(t)dwx,
Jo Jo J c

where

/.w F'(x | t)dwx.
c

We next integrate the left member of (21) by parts twice, and to

simplify the notation we introduce the function

d>(t) =1    du J    ds I    F'(x | s)dwx
Jo        J1        J c

which obviously satisfies the conditions

é(t) and é'(t) absolutely continuous on 0 | / | 1,

(23) é"(t) = <ír(t) almost everywhere onO^íá 1,

é(0) = é'(l) = 0.

Thus we obtain from (21) by two integrations by parts, using y„(0)

=y„'(l)=0and(23),

(24) j   yn"(t)ïé(t) + 2 J   F(x)x(*)<2Wx~L = 0.

But the y'n(t) are closed (and hence complete) in P2(0, 1), and

therefore (24) implies that for almost all t on 0 = t = 1
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(25) é(t) = - 2 f   F(x)x(t)dwx.
Je

Actually, (25) is true for all t on the unit interval, since both sides

are continuous. The continuity of the right member follows from the

continuity of x(i) and the summability of F(x)||x||. Differentiating

(25), we obtain for all t on O^t^l,

d   rw
é'(t) = - 2— j     F(x)x(t)dwx.

dt J c

From this and (23) it is clear that JcF(x)x(t)dwX has an absolutely

continuous derivative on O^i^l which vanishes at t=l. Another

differentiation gives (19) for almost all t, and in particular whenever

the left member is continuous. This must occur in view of (18) when-

ever F'(x\t) is continuous in / for almost all x, and hence the theorem

is established.

Corollary. Theorem III holds when hypotheses (16), (17), (18) are

assumed to hold only for a sequence of y(t), \yn(t)}, such that each y„

has an absolutely continuous derivative and y„(0) =y„' (1) =0 and the

second derivatives \y'n(t)} are closed in L2(0, 1).

Example. We conclude this paper by giving an example to show

how Theorem II can be used to evaluate new Wiener integrals.

As our example, let

where the integrand is understood to vanish when a(t) vanishes

whether the exponential exists or not, and where a(t) and ß(t) satisfy

the following conditions. We assume a(t)ELi, a(t)^0 on O^/^l,

a(/)>0 on a set of positive measure; ß(t)EC and is absolutely con-

tinuous with a derivative essentially of bounded variation;2 finally,

we assume

/a(t) exp \—-r> dt < oo ;
P  l4[0(/)]2i

where the integrand is (as above) interpreted to vanish when a(t)

vanishes.

We first note that F(x)ELv(C) for all positive p. For if r>0,

| log r \p < pp max (r, r'1)
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and hence

r r1 i x(t) i
|^(*)|p < Ppmax     I    a(t) exp -—\dt,

L J o 10(i) I

Moreover by the Schwartz inequality

I    a(2) exp <—   -\fdt-   I    a(/) exp
xW

ß(t)
dt>

[/'«(')*]',

so that

where

Thus

|7?(*)|»<ä: /"'«(O
•^ 0

exp
x(t)

ß(t)
dt

K = />pmax I 1, í   Í    a(t)dn      .

cw r1        cw      I x(/) i
j     \F(x)\"dwx< K I    o(0* I     exp   - d,

%/ c Jo J c 1ß (') I

iC   r1 a(t)dt ra       n

"¡^Jo   t1'2 J_Mexp L

2üT /*i /•»
<- I    a(i)* I    cosh

xWJo J-«

= 2K \    a(t) exp <—r--I d<

ß(t) I        /
-Idî

(-) e~"du
\ß(t)/

<   CC.

Now let 7>i be the null set where P(x) fails to exist, and let us define

P(x) to be zero on ?\[. We then have

F(x + hß)

8F(x\ß)
"{o

P(x) + h when x E C - 7v¿,

when i£ Jí

when x EC — 7<(,

when x E N.-
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Thus the hypotheses of Theorem II (with yo=ß) are satisfied and

we obtain from (15)

In particular, if a(i) =0 when /<s and /3(/) =s_1 min (s, /) for some

fixed jon0<î<l, we obtain formula (2) given in the introduction.

As another special case, take ß(t) =t/2 and a(t) =é(t) exp ( — t~l),

where é(t) is non-negative and summable and not equivalent to

zero on 0=^=T. Clearly the required conditions on a and ß are

satisfied, and we have

j    x(l) [log j   é(t) exp I"   %t  ~    j dt\ dwx = 1.

Other interesting formulas can be obtained by using the formula for

"integrating by parts in function space."
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