THE FIRST VARIATION OF AN INDEFINITE
WIENER INTEGRAL

ROBERT H. CAMERON

1. Introduction. It is the purpose of this paper to obtain a formula
for 6G when G is the indefinite Wiener integral

w
) Gu) = f F(x)dwa.

z(8)Su(t)
Here x is understood to be a variable point in the Wiener space C of
- continuous functions x(f) defined on 0 <¢{=<1 and vanishing at £=0.
The integration is performed over the set S, of elements x(f) of C
which satisfy for all ¢ the inequality

x(t) = u(t).

The function %(f) need not be a member of C, but can be any Borel
measurable function defined on 0 =¢=<1, and may even be permitted
to take on infinite values.

The Wiener integral of a functional is simply the Lebesgue integral
of the functional with respect to Wiener’s measure [4]! in C. This
measure is not invariant under translations, but is in other respects
a Lebesgue measure based on intervals of the form

I: a; < x(t;) < Bi (where 0 < t; < fs < - -+ <t = 1),

having the measure

1 Bn 51 g'lz
I = f .. f e {_ i
mw (D) (m™ti(te — 8) « +  (bn — ta—1))?J q, a *P 4

— )2 _ 2
- _—(i‘z W —(g'" £n1) } dty - - - dtn.

ty — tl tn - tn—l

We denote the Wiener integral of a measurable functional F(x) over
a measurable set SCC by
w
f F(x)dwx.
S

In case S is not contained in C but SC is measurable, we define
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w w
miw(S) = mw(SC) and f Fn)dws = | Flx)dws.
S Sc
In addition to finding G when G is given by (1), we shall also find
certain transformation formulas for Wiener integrals taken over the
whole of C. In particular, we shall obtain what may be considered as
a formula for integration by parts in function space.
Finally, we show that these formulas may be used to evaluate
certain Wiener integrals. As an example we show that

2 f CW [Iog f l a(t)ezmdt] x(s)dwx = %

when 0<s<1, if a(t) is non-negative and of class L; and not equiva-
lent to zeroon s <t =<1.

2. Sub-summable functionals.

DEFINITIONS. Let f(u) be a real or complex function defined on a
set S of an abstract space in which a measure is defined. Then f(u) will
be called “sub-summable” on S if there exists a function g(u) which is
summable on a measurable set S containing S and satisfies on S the
inequality I f(u)l <g(u).

It is clear that if f(«) is also measurable on S, then it is summable
on S (and, of course, S is also measurable).

LEMMA. Let y4(t) EC be absolutely continuous and have a derivative
¥4 (t) which s essemtially of bounded variation® on [0, 1]; let S be a
Wiener measurable subset of C; and for each positive \ let S> be the set
of all x(t) of the form u(t) +hy(t), where uES and Ihl =\. Let >0,
1>0 and let F(x) be a functional defined on S <t such that

() sup | (= + hyo) |
Inl<n
1s sub-summable on S ¢. Then if P(w) is any polynomial, it follows that
there exists 11>0 for which
sup |F(x + hyo) |
lhl §’71
@

S 4 ()ax() 3 ( [ 'y has())

2 Here and elsewhere in this paper the requirement that a function be “essentially
of bounded variation” can be replaced by the requirement that it be “of class Lj”
if Stieltjes integrals are interpreted as Paley-Wiener-Zygmund integrals [3, 1].

‘- exp {217,

1s sub-summable on S .
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For the proof, choose 7;>0 so that ;<e and 9:<7/2, and apply
the translation theorem [2; 1] to a functional G(x) which is summable
on a measurable set containing §¢ and which satisfies on S¢

5 G(x) = sup | F(x + hyo)|.

We translate by 7,y and also by —#sy,, and obtain

w 2 1
f G(x)dwx = exp {— ﬂzf [y¢ (t)]2dx(t)}
© (sF 1 ES 0
w 1
. L G(x t N2Y0) €Xp {¢ zﬂzj; ¥o (t)dx(t)} dwx.

Here the existence of the first member follows from the fact that we
are integrating over a measurable subset of S¢, and the existence of
the second follows from that of the first by the translation theorem.
Moreover, since 29; <7, we have by (5) for x€S and for both upper
and lower signs,

sup |F(x+ hyo) | S G(x % nayo),

18] <2,
and hence it follows from the existence of the Wiener integral in the
second member of (6) that

1
sup IF(x + hyo)l exp {i 2n2f ¥ (t)dx(t)}
0

'h'éﬂg

is sub-summable on S. Thus the maximum of these two functionals

is also sub-summable; that is,
1
[ oo}
(]

is sub-summable on §. The sub-summability of (4) on S follows im-
mediately for positive 7 <72, and hence the lemma is established.

sup | F(x+ hyo)l exp {2172

Bl =n,

3. The first variation of a Wiener integral and vice versa.

THEOREM 1. Let yo(t) € C be absolutely continuous and have a deriva-
tive y¢ (t) which is essentially of bounded variation® on 0=t=<1, and let
F(x) be a Wiener summable functional over the set S u,i2e, Where uo(t)
is Borel measurable on 0=<t=<1 (and may even be infinite there), €>0,
and '

Sau: x(‘)éu(t)) 0=st=1,2€C.
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Let F(x) have a first variation
d
™ 6F = (x| 30 = - Fa + by |
dh h=0
for all *ES wyy2e. Then if 0<n max ogis1 | yo(t)| Se and
®) sup | 8F(x + hyo| 30) |
(LB
1s Wiener sub-summable in x on Suyye, it follows that the functional
w
9 G(u) = f F(x)dwx
z()Zu(t)
has a first variation
d
(10) G = 6G(u| y)) = —G(u + hyo)]
dh h=0

whenever u(t) Suo(t) on 0=t=1 and u is Borel measurable. Moreover
the value of the variation is given by the following integrals (which neces-
sarily exist):

w
BG(uI yo) = f 6F(x| ¥o)dwx

z(t)Su(t)
(11) ” .
-2 F(x)[ f o (t)dx(t)]dwx.
z(t)Su(t) 0

For the proof, we note that if x4+hysES uyt2e,

d
SF(x + hyol ) = S-F(a + hyo+ 230 |

A=0

d d
= SR | = G b

and since the first member of this equation exists, so does the last.

Again, it is clear that S.is is convex, so that if xES 442 and
X+hyoES utze, we have x4-0hyoES u1e for all § in 0=0=<1. Thus by
the law of the mean we obtain F(x+hyo)=F(x)+h6F(x+0hyo|yo)
for some 6 in 0 <0 <1 depending on k. Hence it follows from the sub-
summability of (8) and of F(x) that

(12) sup | F(x + hyo)|
|nl=n

is sub-summable on § 4 4.
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Now for |k| <n and % a Borel measurable function satisfying
u(t) Suo(t), we have by the translation theorem (which guarantees the
existence of the last member)

w

G(u + hyo) =f F(x)dwx

z()—hu(HES,

= exp {—- h’j;l [y¢ (t)]’dt} j;:F(x + kyo)
-exp [— 2h fo 1 ¥y (t)dx(t):l dwx.

Differentiating formally with respect to & and then setting =0, we
obtain

d
6w | 30) = < Glu+ hyo>]

h=0

[k

(13) exp [— 2h fo "y (;)dx(t)]}]mdwx

w
=~f8 6F(x] Yo)dwx

-2 ﬁs WF(x)[ fo ly.,' (t)dx(t):l dwa.

To justify this differentiation under the integral sign (and incidentally
show that all members of (13) exist), we must show that the dif-
ferentiated integrand is dominated for small %z by a summable func-
tional; that is, we must show that

sup
lhl S’l!

{BF(x + hyol y0) — 2F(x + hyo)f B (t)dx(t)}

exp { — 2 fo "y (t)dx(t)}

is sub-summable on S, for 'some 7;>0. But it follows from the sub-
summability of (8) on Su,+. and the lemma that for some %.>0

) 3¢ ()da(t) |}

(14)

sup laF(x + hyol yo)l exp {2172
lhl§ﬂ’
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is sub-summable on § .,. Similarly it follows from the sub-summabil-
ity of (12) on S u4+e and the lemma that for some 535>0,

) 34 ()00 ] } / 34 ()0

is sub-summable on § 4,. Taking 71 =min (92, 7s), we obtain the sub-
summability of (14) on §.CS ., and hence the justification of (13),
including the existence of all its members. Thus the theorem is
established.

An important special case of Theorem 1 is obtained if %(t) =u,(t)
=+ o, so that we integrate over the whole space C. In this case also
u(t)+hyo(t) =+ « and G(u-+hy,) is constant and 6G(u|yo) =0. We
state the result as a separate theorem.

sup |F(x+ hyo)l exp {2173
Ihlé'l;

THEOREM I1. Let yo(t) be absolutely continuous and have a derivative
yo (¢) which is essentially of bounded variation® on 0=<t=1, and let
F(x) be a Wiener summable functional over C. Let F(x) have a first
variation 6 F =8 F\ (xl yo) for all x& C such that

sup IBF(x + hyol yo)l
|n|=n

is Wiener summable in x on C for some n>0. Then it follows that

(15) fcw BF(xl yo)dwx = ZfCWF(x) [fol ¥ (t)dx(t)] dwx.

As a corollary to Theorem II we obtain a formula for “integration
by parts in function space.” We replace F(x) by F(x)G(x).

COROLLARY. Let yo(t) be absolutely continuous and have a derivative
y¢ (t) which is essentially of bounded variation® on 0=<t=<1, and let
F(x) and G(x) be Wiener measurable functionals on C such that
F(x)G(x) is Wiener summable on C. Let F and G have first variations 6 F
and 8G such that

G(x) sup |6F(x + hyo| yo) | and F(x) sup |8G(x + hyo| y0)|
LN} LIRS}
are Wiener summable in x on C for some n>0. Then i; follows that

w
f F(2)8G (x| yo)dwx
c

= [T o[ [ i - srel s
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4. The Wiener integral of a Volterra derivative.

THEOREM 111. Let F(x) be a Wiener summable functional such that
F(x) maxos:<: |x(t)| is also Wiener summable, and such that the first
variation

. d
(16) 6F = (x| ) = <Pz + 1)

h=0

exists for all x and y in C and is expressible in the form

(17) 8F (x| y) = f F'(z| H)y(t)ds,

where F’ (x| t) is measurable in the product space of x and t as well as
summable in t for each x. (It is clear that F’ (xI t) is the Volterra deriva-
tive of F(x) at each point (x, t) of the product space for which F’ (x' t)
1s continuous i (x, t).) Assume also that for each y(t) EC there exists a
corresponding number n=n(y) >0 such that
(18) sup |F'(z+ hy|d)]
IS0, 0551

is Wiener summable in x on C. Then it follows that [{ F(x)x(t)dwx
has an absolutely continuous derivative with respect to t for 0St<1,
and this derivative vanishes at t =1. Moreover

w d2 w
19) f F’(x| Ddwx = — 2 —-—f F(x)x(t)dwx

c ar* Je
for almost all t on 0=t=1, and, in particular, for each t for which the
left member is continuous. Specifically, (19) holds for each t for which
F (xl t) is continuous in t for almost all x in C.

We shall prove that this theorem holds even when we weaken the
hypotheses (16), (17), (18) by assuming that they hold not for all y
in C, but only for a sequence of values of y, namely y=y,
(n=1,2, - - - ), where each y,(¢) has an absolutely continuous deriva-
tive v, () and satisfies y,(0) =y, (1) =0, and where the set of second
derivatives {y,/(t)} is closed in L, on 0<¢=<1. Then if ||y
=maxosts1 |y(t)|, we have by (17) for each n=1, 2, - - - the in-
equality
@0) sup [oF(x + hya| )| S [l3nll- | sup _ [F'(s+ hyn[ 0],

S
In] S0, Bl =n,,05¢<

where 7, denotes 7(y,). Thus for each #, (18) and (20) imply that
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the hypotheses of Theorem II hold with ¥, replacing y,, and we have
from (15),

f: OF (x| yn)dwx = 2 fCW F(x)[ fo l Vo (z)dx(t)] dw .

Integrating by parts in the right member, remembering that x(0)
=9, (1) =0, and using (17) in the left member, we obtain

fc"’ [folF'(xl ‘)y,.(t)dt] dwa
= -2 fc WF(x)[ j; lx(t)y,{’(t)d{l dns.

Since by hypothesis F(x)- ”x“ is summable, we may apply the Fubini
theorem to the right member, and since (18) is summable we may
apply it to the left member. Thus

1) fo ¥ = — 2 fo ey fc " Py,

where

w
2 = Ps| iwa.
(22) ) fc F(z| dwa

We next integrate the left member of (21) by parts twice, and to
simplify the notation we introduce the function

o) = ﬁ‘duﬁudsLWF’(xls)dwx

which obviously satisfies the conditions
¢(t) and ¢’(¢) absolutely continuouson 0 S ¢ < 1,
(23) ¢''(f) = ¥(¢) almost everywhereon 0 £ ¢ < 1,
$(0) = ¢’(1) = 0.

Thus we obtain from (21) by two integrations by parts, using ,(0)
=94 (1)=0 and (23),

(24) j; l ' () [¢(t) +2 fc WF(x)x(t)dwx] dt = 0.

But the y,/(#) are closed (and hence complete) in Ly(0, 1), and
therefore (24) implies that for almost all £ on 0=5¢=<1
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w
(25) o) = — 2 fc F(2) x(t)dw .

Actually, (25) is true for all ¢ on the unit interval, since both sides
are continuous. The continuity of the right member follows from the
continuity of x(¢f) and the summability of F(x)”x”. Differentiating
(25), we obtain for all £ on 0=t <1,

d r%
@) = — ZEfc F(x)x(t)dwx.

From this and (23) it is clear that [§ F(x)x(f)dwx has an absolutely
continuous derivative on 0<¢=<1 which vanishes at ¢t=1. Another
differentiation gives (19) for almost all ¢, and in particular whenever
the left member is continuous. This must occur in view of (18) when-
ever F'(x|t) is continuous in ¢ for almost all x, and hence the theorem
is established.

CoROLLARY. Theorem 111 holds when hypotheses (16), (17), (18) are
assumed to hold only for a sequence of y(t), {y.(t) } , Such that each vy,
has an absolutely continuous derivative and y,(0) =y, (1) =0 and the
second derivatives {y,’,’(t)} are closed in Ly(0, 1).

ExaMpPLE. We conclude this paper by giving an example to show
how Theorem II can be used to evaluate new Wiener integrals.
As our example, let

F(x) = log [j;la(t) exp {;—%} dt],

where the integrand is understood to vanish when «(f) vanishes
whether the exponential exists or not, and where a(f) and 8(¢) satisfy
the following conditions. We assume «(f) EL;, a(t)=0 on 051,
a(2) >0 on a set of positive measure; 8(¢) €C and is absolutely con-
tinuous with a derivative essentially of bounded variation;? finally,
we assume

j;la(t) exp {4[;(0]2} dt < «;

where the integrand is (as above) interpreted to vanish when a()
vanishes.
We first note that F(x) €L,(C) for all positive p. For if >0,

| log r l" < pPmax (r, r 1)
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and hence

lF(x)IP < p? max [f a(f) exp |—

)

B()

{J o l-[350 ]

Moreover by the Schwartz inequality
x(t) 1 2
2 \ar g[ f a(t)dt] ,
B(2) 0

fo 1oz(t) exp { ﬂg; }dt j; a(t) exp

so that
| F(x)|» < Kfla(t) exp @ldt
0 B
where
K = pPmax [1,(fla(t)dt>_z].
Thus

dwx

w 1 w
fc lF(x) |”dwx < Kf a(t)dtf exp 2%5
1 a(f)dt s
1,.1/2 o t1/2 f [ :] dS
2K 1 utl/2
< = . a(t)dt f _“cosh (ﬁ(t) ) du

1 t
= ZKL a(t) exp {4[3(0]2 di
< o,

Now let N be the null set where F(x) fails to exist, and let us define
F(x) to be zero on N. We then have
F(x)+ & when x €C — N,
R+ 1) =
0 when x € N,
when x &€ C — N,

1
BF(xI B = {0 when x € N.
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Thus the hypotheses of Theorem II (with y,=p) are satisfied and
we obtain from (15)

fcw {‘°g [fol““) exp %) d‘]} [ f lﬁ'(»dx(o] s = %

In particular, if a(f) =0 when ¢ <s and B(¢) =s~! min (s, ¢) for some
fixed s on 0<s<1, we obtain formula (2) given in the introduction.

As another special case, take 8(t) =¢/2 and a(t) =¢ () exp (—¢tY),
where ¢(¢f) is non-negative and summable and not equivalent to
zero on 0=5t=<1. Clearly the required conditions on & and B are
satisfied, and we have

f CW (1) [log fo 1¢('t) exp [—zﬁ%_—l] dt] dwx = 1.

Other interesting formulas can be obtained by using the formula for
“integrating by parts in function space.”

BIBLIOGRAPHY

1. R. H. Cameron and Ross Graves, Additive functionals on a space of continuous
functions. 1, Trans. Amer. Math. Soc. vol. 70 (1951) pp. 160-176.

2. R. H. Cameron and W. T. Martin, Transformation of Wiener integrals under
translations, Ann. of Math. vol. 45 (1944) pp. 386-396. ’

3. R. E. A. C. Paley, N. Wiener, and A. Zygmund, Notes on random functions,
Math. Zeit. vol. 37 (1933) pp. 647-668.

4. N. Wiener, Generalized harmonic analysis, Acta Math. vol. 55 (1930) pp.
117-258.

UNIVERSITY OF MINNESOTA



