
ON THE SOLUTIONS OF THE HEAT EQUATION1

W. FULKS

1. Introduction. In his Cours d'analyse mathématique, Goursat

[6, p. 320 ]2 points out (and it had probably been noticed before) that

the basic integral representations for solutions of the heat equation

(1.1) uxx(x, t) — ut(x, t) = 0

and for the solutions of Laplace's equation

(1.2) uxx(x, t) + utt(x,t) = 0

have many similar properties. This analogy has recently served as a

basis for an attack upon the properties of the solutions of (1.1), the

basic properties of those of (1.2) being relatively well known. The

first major step in this direction was made by D. V. Widder [il] who

obtained a Stieltjes integral representation theorem for positive solu-

tions of (1.1) in a half-plane or strip 0<2<P=^ » which, as he re-

marked, is analogous to the corresponding representation given by

Herglotz [8] and Riesz [lO] for positive functions harmonic in the

unit circle.

In 1950 Hartman and Wintner [7] published a paper in which they

obtained a Stieltjes integral representation theorem for solutions of

(1.1) in a rectangle. From this they drew many interesting and il-

luminating conclusions. However, their treatment of the representa-

tion of solutions of (1.1) by means of a Lebesgue integral leaves some-

thing to be desired as they effectively consider only bounded func-

tions. The present author [S], in a University of Minnesota thesis in

1949, independently obtained the main results of Hartman and

Wintner. In this thesis there are many more results which Hartman

and Wintner do not give. There is a rather complete discussion of the

representability of the solutions of (1.1) by a Lebesgue integral, in

fact there are two sets of necessary and sufficient conditions for such

representability. The purpose of this paper is to present one of these

theorems.

Let R he a rectangle 0<x<l, 0<t<B^ », and let us denote by

H the class of functions which satisfy (1.1) and for which uxx and ut
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are continuous. Let G(x, i; £, r) denote the function

where t?3 is the Jacobi theta function. Then, though their statements

are formulated differently, Hartman and Wintner prove the following:

Theorem A. For u(x, t) to be representable in R by

u(x, t) =   f     G(x, t; £, 0)da(0 +  f   G((x, t; 0, r)dß(r)
J o+ Jo

/Gi(x, t; 1, r)dy(r)

(1.3)

where a(£) is of bounded variation in every closed interval in 0<£<1

and ß(r), y(r) are of bounded variation in every closed interval of O^r

<5g=o it is necessary and sufficient that:

(1) u(x, t)EHinR.

(2) f'0u(8, T)dr and f\u(\ — 8, r)dT, 0 = t<B, be of uniform bounded

variation 0<8^8o for some 50>0 in every closed interval of 0 = t<B

g oo.

(3) /¿£(1 -£)|u(%, 8)\d£ = M,0<8 = 80, where M is a constant.

They further establish:

Theorem B. For any function representable in the form (1.3) in R,

the normal limits at the boundary are given by

lim u(x, t) = a'(x),      lim  u(x, t) = ß'(t),       lim   «(x, t) = y'(t)
«-►04- i-»o+ »-»î-o

wherever the derivatives in question exist.

These results are also given in [5].

2. Elementary properties of the kernel function. The kernel func-

tion in (1.3) is given by the equation

(2.1) G(x, t; Ç, r) = -HfcfcLi, t - r\ - * (^> * " *)]

where t?3 is the well known Jacobi theta function. Two convenient

formulas for â3 are

(2.21) â3( — x, tj = 1 + E cos nirx exp [- nVt]
V 2        / „_i
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and

(2.22)        â3(— x, tj = (wt)-1'2 ¿ exp [-(* + 2»)2/4i].

(See Doetsch [l, pp. 26 and 307].) It is easily seen from these two

representations for#3 that G(x, t; £, t) and its derivative G%(x, t; £, t)

are uniformly continuous functions as long as (x, /) is bounded away

from (£, r).

Remarks. 1. From a further representation

#s( — x, tj = Ö0Q2II   1 - (sin2 — Trx/cosh2 ( n-j tH J

(see Magnus and Oberhettinger [9, p. 141 ]) where the Q's are positive

functions of t lor t>0, it is clear that

(1) G{(x, /; 0, t) > 0   for   0 < x < 1        and   t> r,

(2) Gt(x, t; 1, t) < 0   for   0 < x < 1        and   t > t,

(3) G(x, t; f, t)   > 0   for   0 < x, £ < 1,  and    t > t.

2. For fixed x, /, 0<x<l, e^t—r^B', where e, B are two positive

constants, there exist three positive constants c, C, and S, which de-

pend only upon x, t, e, and B' such that

C{ = G(x, t; £,t)£c!;, 0 < |< S,

C(l - p = G(x, f, Ç, t) à c(l - t),    0 < 1 - £ < 5.

The proofs of these remarks are indicated on p. 380 of the paper by

Hartman and Wintner.

3. The Lebesgue integral representation. We are now prepared to

state and prove our basic

Theorem. For u(x, t) to be representable in R by

u(x, t) =   f G(x, t; k, 0)a(pd£ +  f G((x, t; 0, r)b(T)dT

(3.1) J° J°-i <

/.
G{(x, /; 1, T)c(r)dr

where a(p)EL in every closed interval in 0<£<1, b(r), c(t)EL in

every closed interval in 0=><P= », it is necessary and sufficient that

(1) w(x, t) EH in R.
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lim       f
->0S'->0  J o

u(S, t) - u(8', t) I dr = 0,

(2) r,lim | «(1 - 5, r) - m(1 - Ô', t) | ¿t = 0
ä-»0,ä'->0  Jo

/or e»ery /, 0<t<B— oo.

(3) lim      f   £(1 - Ö | «({, 5) - «({, 5') | df = 0.
a-»o,S'-»o J o

It might be pointed out that this gives us immediately a result on

the uniqueness of the solution of the boundary value problem asso-

ciated with (1.1) in R as a

Corollary. // u(x, t) satisfies conditions (1), (2), and (3) and in

addition u(x, 0 + )=0, w(0 + , /)=0, «(1—0, /)=0 almost everywhere,

then u(x, t)=0 in R.

For u(x, t) is representable by (3.1), and by Theorem B, the func-

tions a, b, and c vanish almost everywhere.

This seems to be an improvement over known results. A résumé

of those obtained prior to 1936 is contained in Doetsch [2]. Typical

of these is the result of Volterra quoted on p. 56 which requires in

addition that both u and ux be continuous in the "closed" rectangle

O^x^l, 0 = t<B¿ oo.

We now proceed to prove the sufficiency of the conditions of the

theorem. Let the closed interval IE{0 = t<B— oo } be prescribed

and e he any measurable set in I:

I   | «(5, t) I dr -  j   | »(«', t) I dr =   j   \ u(8, r) - u(8', t) \ dr.

But given e>0,   there exists r¡(e, I) such that

j   | u(8, t) - u(8', t) I dr á e/2   for 5, 5' < ç(i, I).

Then

j   | u(8, r)\dr=   j    \ u(8', r)\dr + e/2.

Now keep 8' fixed: by the property of absolute continuity of an

integral we can take m(e) so small that the integral on the right is

bounded by e/2. Hence
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/.
«(5, t) j dr < e

uniformly for 0<8<r¡(e, I), for m(e) sufficiently small. This estab-

lishes uniform absolute continuity of /ÓM(^> r)^r m anY closed interval

of 0^/<P^ ». Hence by formula (15i) on p. 374 of Hartman and

Wintner, dß(r) in (1.3) can be replaced by b(r)dr. Similarly dy(r)

can be replaced by c(r)dr. By (153) of Hartman and Wintner, da(p)

can be replaced by a(p)d% in any closed interior interval of 0<£<1.

Hence, passing to the limits,

/• 1-0 n 1

I      G(x, t; P 0)da(p =   I   G(x, t; £, 0)a(pdC
1/0+ «o

since the integral converges absolutely.

We turn next to the necessity of our conditions. We shall first

assume that u(x, f)^0 in R, then later remove this restriction.

By Hartman and Wintner formula (15i)

lim u(x, r)dr =   I     b(r)dT
j->0+  J o Jo

and by Theorem B, for almost all t, 0^/<P^», we have that

limIJ.o+ u(x, t)=b(t). These relations imply that

lim   f
a->o J o
lim   j     | u(o, t) - b(r) | dr = 0.
i->0   J 0

[For if (i)/n(x)^0, (ii) lim„,oo/„(x) =/(x) almost everywhere, agx

g&, (iii) lim„.0O/¿fn(x)dx=/^(x)áx,thenlimn.0O/*|/n(x)-/(x)|dx = 0.

This follows easily from a result of de la Vallée Poussin quoted by

Evans [4, p. 13].]

To remove the restriction of positivity we note that u(x, t) can be

written as the difference of two positive functions. For we can write

a(x) = ai(x) — a2(x) where ai(x) and a2(x) are positive, for example,

ai(x) = | a(x) | and a2(x) = | a(x) | — a(x), and we can similarly separate

b(t) and c(t), and write u(x, t)=Ui(x, t)—u2(x, t) where «i(x, t) has

the boundary values ai(x), bi(t), and Ci(t), and w2(x, t) has the bound-

ary values a2(x), b2(t), and c2(t), and where »i(x, t) and m2(x, t) are

clearly non-negative functions by Remark 1. By applying the above

result to Mi(x, t) and u2(x, t), we see that the result is true for u(x, t)

= Ui(x, t)—u2(x, t). Similarly the result is true for approach to the

right side of the region R. But these results imply condition (2) of the

theorem.
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To establish condition (3) we make use of the relation (see Doetsch

[3, p. 615])

(3.2) f G(y, 8; x, 0)G(x, t; £, 0)dx = G(y, t + Ô; ¿, 0).
Jo

Now from our representation (3.1) we obtain

j    G(y, 8; x, 0)u(x, t)dx =   f  G(y, 8; x, 0)  f  G(x, t;£,0)a(C)dtdx
Jo Jo Jo

(3.3) +f    f G(y, 8; x, 0)G((x, t; 0, r)b(r)dTdx
Jo    Jo

-  I      I   G(y, 8; x, 0)G{(x, t; 1, T)c(r)dTdx.
Jo   Jo

Applying the dominated convergence theorem to the last two inte-

grals as double integrals we see that they vanish as í—»0+. The first

integral of (3.4) can, by the use of (3.3), be written as

f G(y, t + 8;t, 0)a(£)#.
J o

Then passing to the limit under the integral sign we get

Um    j   G(y, 8; x, 0)«(x, t)dx =   j    G(y, 8; £, 0)a(£)¿£.
Í-.0+   Jo Jo

And by Theorem B we have, for almost all x, 0<x<l,

lim u(x, t) = a(x).
<-»o+

Hence, if u(x, t) is positive, we can again invoke the theorem on

strong and weak convergence to obtain

lim    f G(y,i;{,0)|«({f0 - a(8 | # = 0.
«-»o+ J0

We can remove the condition of positivity as before. This then im-

plies

lim      f G(y, 8; {, 0) | «({, *) - «({, t') | ¿£ = 0.
l-.O.i'-fO    Jo

But by the second remark and the fact that G(y, 8; £, 0) is bounded
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away from zero in any closed interval interior to 0<£<1, this last

equation is equivalent to condition (3) of the theorem.
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