AN ELEMENTARY PROOF OF THE JORDAN-SCHOENFLIES THEOREM ${ }^{1}$

STEWART S. CAIRNS

1. Introduction.

The jordan-schoenflies theorem. A simple closed curve c in a plane E separates E into two regions. There exists a self-homeomorphism of E under which c is mapped onto a circle.

The exterior of a bounded closed point set b in E will mean the unbounded region of the complementary set $E-b$. The remainder of $E-b$, if not vacuous, will be called the interior of b.
(A) As a corollary to the above theorem, c is intersected by any simple arc with one end point interior and one exterior to c.

This paper contains an elementary constructive proof of the Jordan-Schoenflies Theorem, motivated by the belief that such a proof should be presented at a fairly early stage to students of topology and analysis. To that end, it is desirable that the argument be disassociated from conformal mapping theory and be accomplished by methods as elementary as possible.
2. Preliminary results. Let (x, y) denote a rectangular cartesian coordinate system in E. The following two statements can be quickly established by familiar methods.
(A) Let b_{1} and b_{2} denote two simple closed curves for each of which the Jordan-Schoenflies Theorem holds. Then an arbitrary homeomorphism between b_{1} and b_{2} can be extended to a self-homeomorphism of E.
(B) If the Jordan-Schoenflies Theorem holds for b_{1} and b_{2}, and if the intersection $b_{1} \cdot b_{2}$ is a simple arc b, then the Jordan-Schoenflies Theorem holds for the simple closed curve $b_{1}+b_{2}-b^{\prime}$, where b^{\prime} denotes b without its end points.

Theorem 2.1. The Jordan-Schoenflies Theorem holds for a simple closed polygon p. A polygonal path crossing p at just one point and otherwise not meeting p has one end point exterior and one interior to p.

Proof. (C) The result offers no difficulty when p is a triangle.

[^0]Suppose p has $n>3$ vertices and assume Theorem 2.1 for all polygons having fewer than n vertices.

Let α be the set of all points each attainable from the exterior of p by a polygonal path crossing p at just one point and otherwise not meeting p.

Lemma 2.1. There exists a line segment d joining ${ }^{2}$ two vertices of p on α.

To establish Lemma 2.1, let P_{0} be the point on p with the smallest ordinate among those where the absicssa is smallest. Then P_{0} is a vertex of p. Let P_{1}, P_{2} be the vertices consecutive with P_{0} in either sense along p. Let δ denote the triangular region $P_{0} P_{1} P_{2}$. Then either $P_{1} P_{2}$ satisfies Lemma 2.1 or else $\bar{\delta}$ contains vertices of p other than (P_{1}, P_{2}). In the latter case, $P_{0} P_{3}$ satisfies the lemma if P_{3} is one of the vertices on $\bar{\delta}-\left(P_{1}, P_{2}\right)$ with least abscissa greater than the abscissa of P_{0}.

Let p_{1}, p_{2} be the two polygonal arcs into which the end points of d divide p. Then the hypothesis of the recurrency (see (A) above) applies to $p_{1}+d$ and to $p_{2}+d$. Theorem 2.1 now follows for p, and hence follows in general, with the aid of result (B).

3. Approximation to a sector.

Lemma 3.1. Let c be a Jordan curve with at least one interior point P and let α be the maximal region of $E-c$ containing P. Then any chord

$$
\begin{equation*}
d=D_{1} D_{2} \tag{3.1}
\end{equation*}
$$

of c on α separates α into two regions.
Proof. Let c_{1}, c_{2} be the two arcs into which D_{1}, D_{2} separate c. Let p denote an arbitrary simple closed polygon crossing d at just one point M, and not meeting d elsewhere.
(A) The polygon p intersects $c_{i}(i=1,2)$.

This auxiliary result follows from the facts that (1) p separates D_{1} from D_{2}, by Theorem 2.1, and (2) c_{i} joins D_{1} and D_{2}.
(B) Let p be traced from M in either sense to the first points encountered on c. This leads to two distinct points, P_{1} and P_{2}, on c_{1} and c_{2} respectively.

To establish (B), let p_{0} be the $\operatorname{arc} P_{1} M P_{2}$ of p. Suppose that (B) is false and that both end points of p_{0} are on c_{1}, for example. Let c_{0} be the arc of c_{1} which they bound. From parts of p_{0} and a suitable

[^1]polygonal approximation to c_{0}, it is possible to put together a simple closed polygon through M, meeting ($c_{2}+d$) only at M, where it crosses d. By the argument for (A), this is contradictory, since such a polygon would necessarily meet c_{2}.
(C) Let p_{i} be the arc of p_{0} with M and P_{i} for end points $(i=1,2)$, and let α_{i} be the set of all points which can be joined to p_{i} by arcs not meeting $c+d$. Then (1) α_{1} and α_{2} are disjoint and (2) $\bar{\alpha}_{1}+\bar{\alpha}_{2}=\bar{\alpha}$.

Figure 3.1
If α_{1} and α_{2} were not disjoint, then any point common to them could be joined to $p_{i}(i=1,2)$ by a polygonal arc q_{i} on α_{i}. From parts of p_{1}, p_{2}, q_{1}, and q_{2}, a polygon could be put together, leading to the same sort of contradiction as in the argument for (B). Part (2) of (C) presents no difficulty. The lemma and the corollary below now follow at once.

Corollary. In the above notation, the boundary of α_{i} is on $d+c_{i}$ ($i=1,2$).

Either of the two parts into which a chord $d=D_{1} D_{2}$ separates α will be called a sector β of α. As a preliminary to proving that α is a 2-cell, a method will now be developed for partially filling in β by an approximating region β^{*}. In accordance with the preceding corollary, the boundary of β is on $d+\mu$, where μ is one of the arcs of c with D_{1} and D_{2} for end points. From the midpoint M of d, let a ray normal to d be extended into β, and let P be the first point of c on that ray. Then, by the above corollary, P is on μ [see Fig. 3.1]. Let μ_{i} be the arc of μ with P and D_{i} for end points ($i=1,2$). By

Lemma 3.1 and the corollary, $M P$ separates β into two regions $\beta_{i}(i=1,2)$, where the boundary of β_{i} is on $\mu_{i}+M D_{i}+M P$. Let δ_{i} be the interior of the triangle $M P D_{i}$. A subset β_{i}^{*} of δ_{i} will next be defined, as an approximation to β_{i}. Its boundary will be the union of $M P, M D_{i}$, and an arc μ_{i}^{*} joining D_{i} and P on $\bar{\delta}_{i}$.

Case I. $\left(\delta_{i} \subset \beta_{i}\right)$. In this case $\mu_{i}^{*}=P D_{i}$ and $\beta_{i}^{*}=\delta_{i}$ (see β_{1}^{*} in Fig. 3.1).

Case II. $\left(\delta_{i} \nsubseteq \beta_{i}\right)$. In this case, let μ_{i}^{\prime} be the intersection of μ_{i} with δ_{i}. The convex hull of $\mu_{i}^{\prime}+P D_{i}$ is then bounded by a convex closed curve $\mu_{i}^{\prime}+D_{i} P$; and the arc μ_{i}^{*} separates δ_{i} into two regions, of which the one with M on its boundary will be β_{i}^{*} [see β_{2}^{*} in Fig. 3.1].
(D) The approximation β^{*} to β is now defined as the union of $\beta_{1}^{*}, \beta_{2}^{*}$ and the open segment $M P$. It is uniquely determined by β.
(E) The arc

$$
\begin{equation*}
\mu^{*}=\mu_{1}^{*}+\mu_{2}^{*} \tag{3.2}
\end{equation*}
$$

is the union of a subset c^{*} of μ and a denumerable set of chords of c. As a point P^{*} traces μ^{*} from D_{1} to D_{2}, the open segment $M P^{*}$ sweeps out the entire region β^{*}.
4. An interior region of a Jordan curve. Under the hypotheses of Lemma 3.1, let $h(c)$ be an arbitrary but fixed homeomorphic mapping of c onto a circle k. The images of c^{*}, μ, and D_{i} [see $\S 3$ for notation] will be denoted by

$$
\begin{align*}
k^{*} & =h\left(c^{*}\right), \\
v & =h(\mu), \tag{4.1}\\
E_{i} & =h\left(D_{i}\right) \quad(i=1,2) .
\end{align*}
$$

Then v is an arc of k with end points E_{1}, E_{2}, and k^{*} is a subset of v. Let $h(c)$ now be extended to each chord of c on μ^{*} [see §3(E)] and to the chord d by the requirement that these cords map linearly onto chords of k. This extends $h(c)$ into a map $h\left(c+d+\mu^{*}\right)$. Let the images of d and μ^{*} [see §3] be

$$
\begin{align*}
e & =h(d), \tag{4.2}\\
v^{*} & =h\left(\mu^{*}\right)
\end{align*}
$$

Then e is the chord $E_{1} E_{2}$ and v^{*} is a simple arc from E_{1} to E_{2} on the closure of the region γ bounded by $e+v$. The arc v^{*} is the union of k^{*} and a denumerable set of chords of k.

The image $N=h(M)$ of M is the midpoint of e. As P^{*} traces μ^{*} from D_{1} to D_{2}, its image $Q^{*}=h\left(P^{*}\right)$ traces v^{*} from E_{1} to E_{2}, and the
open segment $N Q^{*}$ sweeps out an approximation γ^{*} to γ, bounded by $e+v^{*}$. Let h now be extended over β^{*} by the requirement that it map each segment $M P^{*}$ linearly onto the segment $N Q^{*}$.
(A) This completes the extension of $h(c)$ into a homeomorphic mapping $h\left(c+\beta^{*}\right)$ of $c+\beta^{*}$ onto $k+\gamma^{*}$. The extension is uniquely determined, given $h(c)$ and the sector β.

Theorem 4.1. Under the hypotheses of Lemma 3.1, an arbitrary homeomorphic mapping $h(c)$ of c onto a circle k can be extended into a homeomorphic mapping $H(\bar{\alpha})$ of $\bar{\alpha}$ onto \bar{K}, where K is the interior of k.

Let $d=D_{1} D_{2}$ be an arbitrary chord of c on α. Let β^{*}, γ^{*} be approximations, as defined in $\S 3(\mathrm{D})$, to the two sectors into which d separates α. Let α_{1} denote the union of β^{*}, γ^{*} and the open segment $D_{1} D_{2}$.
(B) By the extension process of statement (A), let $h(c)$ be extended over both $\bar{\beta}^{*}$ and $\bar{\gamma}^{*}$, hence over $\bar{\alpha}_{1}$. This defines a homeomor phic mapping $H_{1}\left(\bar{\alpha}_{1}+c\right)$ of $\bar{\alpha}_{1}+c$ onto a certain subset $\bar{K}_{1}+k$ of \bar{K}.

The definition of $H_{1}\left(\bar{\alpha}_{1}+c\right)$ is the first step of a recurrent process, based on the following hypothesis, which is easy to verify for $j=1$.

Hypothesis. For some positive integer j, the sets α_{i}, K_{i} and the homeomorphisms $H_{i}(i=1,2, \cdots, j)$ have been so defined that:
(1) The domain of H_{i} is $\bar{\alpha}_{i}+c$, where α_{i} is a 2-cell on α.
(2) The boundary of α_{i} is a simple closed curve c_{i} which is the union of a point set c_{i}^{*} on c and a denumerable set of chords of c on α.
(3) The image $k_{i}=H_{i}\left(c_{i}\right)$ is the union of a subset $k_{i}^{*}=H_{i}\left(c_{i}^{*}\right)$ of k and a denumerable set of chords of k.
(4) The mapping H_{i} is linear between the chords of c on c_{i} and the chords of k on k_{i}.
(5) Each map H_{i+1} is an extension of H_{i} and of $h(c)$.

Let $d_{i}(i=1,2, \cdots)$ denote the chords of c on c_{j}. Of the two sectors into which d_{i} separates α (see Lemma 3.1), let β_{i} be the one which contains no point of α_{j}, and let β_{i}^{*} be the approximation to β_{i} defined in $\S 3(\mathrm{D})$.
(C) The region α_{j+1} is now defined as

$$
\begin{equation*}
\alpha_{j+1}=\alpha_{j}+\sum \beta_{i}^{*}+\sum d_{i}^{\prime} \tag{4.3}
\end{equation*}
$$

where d_{i}^{\prime} is the chord d_{i} without its end points. The homeomorphism H_{j+1} is now defined on $\bar{\alpha}_{j+1}-\bar{\alpha}_{j}$ by extending $h(c)$ over each $\bar{\beta}_{*}^{x}$, using the process of (A) above. On c_{j}, this extension agrees with H_{j}, as a consequence of the linearity requirements in the extension process and in part (4) of the above hypothesis.

On $\bar{\alpha}_{j}$, let H_{j+1} be defined as identical with H_{j}. It is then easy to verify the above Hypothesis with $j+1$ in place of j where

$$
\begin{align*}
K_{j+1} & =H_{j+1}\left(\alpha_{j+1}\right), \tag{4.4}\\
k_{j+1} & =H_{j+1}\left(c_{j+1}\right) .
\end{align*}
$$

Lemma 4.1. For any $\epsilon>0$, there exists an integer j so large that every circular region of radius ϵ about a point on c contains a sector on α outside α_{j} and cut off by a chord of c_{j}. In other words, the regions of Fig. 3.1 become uniformly small as j increases.

Suppose the lemma false. As a consequence of the recurrent process for defining the regions α_{j}, it follows that, for some $\epsilon>0$, there exists at least one circular neighborhood of radius ϵ with center on c containing no point of $\sum c_{i}^{*}$.

Let c_{0} be a maximal arc of $c-\sum c_{t}^{*}$, and let P_{0}, P_{0}^{\prime} be its end points. Let N, N^{\prime} be the circular neighborhoods about P_{0}, P_{0}^{\prime} respectively each of radius $d\left(P_{0}, P_{0}^{\prime}\right) / 3$. By definition of c_{0}, it is possible to find two points (D_{1}, D_{2}) such that (1) D_{1} and D_{2} are the end points of a chord d of c on the curve c_{i} [see Hypothesis, Part (2)] for some value of i. (2) If c_{i}^{\prime} is the arc of c which has D_{1}, D_{2} for end points and contains c_{0}, then $\left(c_{i}^{\prime}-c_{0}\right) \subset\left(N+N^{\prime}\right)$. (3) D_{1} and D_{2} are so close to P_{0} and P_{0}^{\prime} respectively, that the perpendicular bisector n of d does not meet $\bar{N}+\bar{N}^{\prime}$. In the extension process, a point of c_{i+1}^{*} is common to n and c_{i}^{\prime}, hence is on the arc c_{0}. Since this contradicts the definition of c_{0}, Lemma 4.1 is proved.

Corollary. Every point of α is on one of the 2-cells α_{i}.
Assume the contrary, and let Q be a point on $\alpha-\sum \alpha_{i}$. For each value of i, there is a chord d_{i} on c_{i} which separates α into two sectors, one of which, β_{i}, contains Q, while the other contains α_{i}. Let e_{i} be the arc of c on $\bar{\beta}_{i}$. Then, as a consequence of Lemma 4.1, there is just one point Q^{*} common to all the arcs e_{i}. For i large enough, any given neighborhood $N\left(Q^{*}\right)$ will contain $d_{i}+c_{i}$ and hence β_{i}. Since $N\left(Q^{*}\right)$ need not contain Q, the corollary follows.

Now let H be defined as the common extension of all the homeomorphisms H_{i}. By the above corollary, the domain of H is $\alpha+c$. Furthermore, H is continuous on $\bar{\alpha}$. Its continuity on α follows from the continuity of the H_{i}, while its continuity at points on c follows from Lemma 4.1. Hence the mapping H fulfills the requirements of Theorem 4.1.

Let b_{1} and b_{2} denote two Jordan curves, each with an interior, and let β_{i} be a 2 -cell with b_{i} for boundary ($i=1,2$), in accordance with

Theorem 4.1. Suppose the intersection of b_{1} and b_{2} is an $\operatorname{arc} b$, where $b_{1}-b$ is exterior to b_{2} and $b_{2}-b$ is exterior to b_{1}. Let b^{\prime} denote b without its end points, and let

$$
\begin{equation*}
\beta=\beta_{1}+b^{\prime}+\beta_{2} . \tag{4.5}
\end{equation*}
$$

(D) As a corollary to Theorem 4.1, β is a 2 -cell with $b_{1}+b_{2}-b^{\prime}$ for boundary, and any homeomorphism between this boundary and a circle k can be extended into a homeomorphism between $\bar{\beta}$ and \bar{K} (see Theorem 4.1 for notation). It will be said that β is obtained by amalgamating β_{1} and β_{2} across b.

5. Completion of the proof.

Lemma 5.1. Let c satisfy the hypotheses of Lemma 3.1 and hence of Theorem 4.1. Let g be a simple arc joining two distinct points P_{1} and P_{2} of c and lying on α, save for P_{1}, P_{2}. Let c_{1}, c_{2} be the two arcs into which P_{1}, P_{2} divide c. Then g separates α into two 2 -cells α_{1}, α_{2} where α_{i} has $g+c_{i}$ for boundary ($i=1,2$).

Proof. By Theorem 4.1, the lemma reduces to the case where c is a circle and α is its interior. If g did not separate α, a polygonal arc p could be constructed joining c_{1} to c_{2} on α without meeting g. This arc p could be completed outside c to a simple closed polygon. By Theorem 2.1, using an arc of circle instead of a polygonal path, such a polygon must separate P_{1} from P_{2} and hence must intersect g, contrary to its definition. It follows that $g+c_{i}$ satisfies the hypotheses of Theorem 4.1. Let α_{i} be a 2 -cell bounded by $g+c_{i}$ in accordance with that theorem. By $\S 4(\mathrm{D}), \alpha_{1}$ and α_{2} can be amalgamated across g to obtain the 2 -cell, α, bounded by c.

Next consider an arbitrary simple closed curve c. Let p be a simple closed polygon, meeting c in just two points, P_{1} and P_{2}, and otherwise exterior to c. Such a polygon is easy to define, if P_{1} and P_{2} are chosen as points of maximum and minimum ordinates, respectively, on c.

Let c_{1} and c_{2} be the two arcs into which P_{1} and P_{2} divide c. As a consequence of Theorem 2.1 and Lemma 5.1, c_{i} separates the interior, ρ, of p into two 2 -cells α_{i} and β_{i}, one of which, β_{i}, contains c_{j} ($i=1, j=2$) and ($i=2, j=1$). Similarly, c_{1} separates β_{2} into two 2-cells, one of which, α, has $c_{1}+c_{2}$ for boundary. Any point on α is interior to c, since any arc joining it to p must meet either c_{1} or c_{2}. This establishes the following result.

Lemma 5.2. Any Jordan curve has an interior.
Now let α_{1} and α be amalgamated across c_{1} [see §4(D)] and let
the resulting 2 -cell be amalgamated with α_{2} across c_{2} to obtain a 2-cell ρ with p for boundary. By Theorem 2.1, ρ is the interior of p. Since α_{1} and α_{2} are exterior to c, the 2 -cell α constitutes the entire interior of c. The Jordan-Schoenflies Theorem now follows readily in all its generality.

University of Illinois

A NOTE ON CURVATURE AND BETTI NUMBERS

H. GUGGENHEIMER

1. S. Bochner has proved the following theorem [2]:1 Let $M^{(m)}$ be a closed manifold with complex structure $[4 ; 7]$ of complex dimension m, on which there exists a Kähler-metric $[2 ; 3 ; 5]^{2}$
(2)

$$
\begin{align*}
d s^{2} & =g_{i k^{*}}\left(d z^{i} d z^{*}\right),^{3} \tag{1}\\
\frac{\partial g_{i k^{*}}}{\partial z_{l}} & =\frac{\partial g_{l k^{*}}}{\partial z_{i}}
\end{align*}
$$

Let $R_{i k}$. denote the Ricci tensor and

$$
\begin{equation*}
P_{h i^{*} ; j k^{*}}=R_{h i^{*} j k^{*}}-\frac{1}{m+1}\left(g_{h i^{*}} \cdot R_{j k^{*}}+g_{h k^{*}} R_{i^{*} j}\right) \tag{3}
\end{equation*}
$$

the tensor of projective curvature. In every point of $M^{(m)}$ we form the numbers

$$
\begin{align*}
& L=\inf _{\xi} \frac{-R_{i k^{*} \cdot \xi^{i} \xi^{*}}}{\xi^{i} \xi_{i}}, \tag{4}
\end{align*}
$$

with all vectors ξ^{i} and skew-symmetric tensors $\xi^{i^{*}}$ attached to the point in question. If

$$
\begin{equation*}
L>0 \tag{6}
\end{equation*}
$$

[^2]
[^0]: Presented to the Society, December 30, 1948; received by the editors June 5, 1950 and, in revised form, January 15, 1951.
 ${ }^{1}$ The proof has been substantially shortened and simplified since the presentation of the paper to the Society as a result of suggestions by Mr. John Nash of Princeton University.

[^1]: ${ }^{2}$ A simple arc will be said to join its end points on a region if the entire arc, save perhaps for either or both end points, is on that region.

[^2]: Received by the editors December 8, 1950.
 ${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.
 ${ }^{2}$ Products of differentials in parentheses denote ordinary products, products without parentheses are skew products.
 ${ }^{3}$ We denote by i^{*} the index relative to $z^{* i}$.

