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1. Introduction.

The jordan-schoenflies theorem. A simple closed curve c in a

plane E separates E into two regions. There exists a self-homeo-

morphism of E under which c is mapped onto a circle.

The exterior of a bounded closed point set b in E will mean the

unbounded region of the complementary set E — b. The remainder of

E — b, if not vacuous, will be called the interior of b.

(A) As a corollary to the above theorem, c is intersected by any simple

arc with one end point interior and one exterior to c.

This paper contains an elementary constructive proof of the

Jordan-Schoenflies Theorem, motivated by the belief that such a

proof should be presented at a fairly early stage to students of

topology and analysis. To that end, it is desirable that the argument

be disassociated from conformai mapping theory and be accom-

plished by methods as elementary as possible.

2. Preliminary results. Let (x, y) denote a rectangular cartesian

coordinate system in E. The following two statements can be quickly

established by familiar methods.

(A) Let bi and b2 denote two simple closed curves for each of which

the Jordan-Schoenflies Theorem holds. Then an arbitrary homeo-

morphism between bi and b2 can be extended to a self-homeomorphism of

E.

(B) If the Jordan-Schoenflies Theorem holds for bi and b2, and if

the intersection bi-b2 is a simple arc b, then the Jordan-Schoenflies

Theorem holds for the simple closed curve bi + b2 — b', where V de-

notes b without its end points.

Theorem 2.1. The Jordan-Schoenflies Theorem holds for a simple

closed polygon p. A polygonal path crossing p at just one point and

otherwise not meeting p has one end point exterior and one interior to p.

Proof. (C) The result offers no difficulty when p is a triangle.
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1 The proof has been substantially shortened and simplified since the presentation

of the paper to the Society as a result of suggestions by Mr. John Nash of Princeton

University.
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Suppose p has n>3 vertices and assume Theorem 2.1 for all polygons

having fewer than n vertices.

Let a be the set of all points each attainable from the exterior of p

by a polygonal path crossing p at just one point and otherwise not

meeting p.

Lemma 2.1. There exists a line segment d joining2 two vertices of p

on a.

To establish Lemma 2.1, let P0 be the point on p with the smallest

ordinate among those where the absicssa is smallest. Then P0 is a

vertex of p. Let Pi, P2 be the vertices consecutive with Po in either

sense along p. Let 5 denote the triangular region P0PiP2. Then either

PiP2 satisfies Lemma 2.1 or else b contains vertices of p other than

(Pi, P2). In the latter case, P0P3 satisfies the lemma if P3 is one of

the vertices on b — (Pi, P2) with least abscissa greater than the ab-

scissa of P0.

Let pi, p2 he the two polygonal arcs into which the end points of d

divide p. Then the hypothesis of the recurrency (see (A) above)

applies to pi+d and to p2+d. Theorem 2.1 now follows for p, and

hence follows in general, with the aid of result (B).

3. Approximation to a sector.

Lemma 3.1. Let c be a Jordan curve with at least one interior point P

and let a be the maximal region of E — c containing P. Then any chord

(3.1) d = DiD2

of con a separates a into two regions.

Proof. Let C\, c2 he the two arcs into which Dx, D2 separate c.

Let p denote an arbitrary simple closed polygon crossing d at just

one point M, and not meeting d elsewhere.

(A) The polygon p intersects c¿ (*=1, 2).

This auxiliary result follows from the facts that (1) p separates

Di from D2, by Theorem 2.1, and (2) c¿ joins 7J>i and D2.

(B) Let p be traced from M in either sense to the first points en-

countered on c. This leads to two distinct points, Pi and P2, on Ci and c2

respectively.

To establish (B), let po be the arc PiMP2 of p. Suppose that (B)

is false and that both end points of po are on C\, for example. Let c$

be the arc of Ci which they bound. From parts of p0 and a suitable

2 A simple arc will be said to join its end points on a region if the entire arc, save

perhaps for either or both end points, is on that region.
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polygonal approximation to c0, it is possible to put together a simple

closed polygon through M, meeting (c2+d) only at M, where it

crosses d. By the argument for (A), this is contradictory, since such

a polygon would necessarily meet c2.

(C) Let pi be the arc of pD with M and Pi for end points (i=l, 2),

and let ai be the set of all points which can be joined to pi by arcs not

meeting c+d. Then (1) on and ct2 are disjoint and (2) äi + ä2 = ä.

Di M L\

Figure 3.1

If «i and a2 were not disjoint, then any point common to them

could be joined to pi (*' = 1, 2) by a polygonal arc g¿ on a,-. From

parts of pi, p2, qi, and q2, a polygon could be put together, leading to

the same sort of contradiction as in the argument for (B). Part (2)

of (C) presents no difficulty. The lemma and the corollary below

now follow at once.

Corollary. In the above notation, the boundary of ai is on d+Ci

(»-1, 2).

Either of the two parts into which a chord d = DxD2 separates a

will be called a sector ß of a. As a preliminary to proving that a is a

2-cell, a method will now be developed for partially filling in ß by

an approximating region ß*. In accordance with the preceding corol-

lary, the boundary of ß is on d+p, where p is one of the arcs of c

with Di and D2 for end points. From the midpoint M of d, let a ray

normal to d be extended into ß, and let P be the first point of c on

that ray. Then, by the above corollary, P is on p [see Fig. 3.1].

Let pi be the arc of p with P and Di for end points (i=i, 2). By
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Lemma 3.1 and the corollary, MP separates ß into two regions

ßi (i=l, 2), where the boundary of ßi is on pi + MDi+MP. Let 6¿

be the interior of the triangle MPDi. A subset ß* of 3¿ will next be

defined, as an approximation to ßi. Its boundary will be the union of

MP, MDi, and an arc p* joining 2?< and P on 5¿.

Case I. (biEßi)- In this case p? = PDi and ß* = bi (see ß* in Fig.

3.1).
Case II. (8,-(T_j8i). In this case, let pi he the intersection of ¿u¿ with

5j. The convex hull of pi +PDt is then bounded by a convex closed

curve pl+DiP; and the arc p* separates S,- into two regions, of

which the one with M on its boundary will be ßf [see ß* in Fig. 3.1 ].

(D) The approximation ß* to ß is now defined as the union of

ß*, ß* and the open segment MP. It is uniquely determined by ß.

(E) The arc

*        *        *
(3.2) p   = pi + p2

is the union of a subset c* of p and a denumerable set of chords of c.

As a point P* traces p* from Z>i to Z>2, the open segment MP* sweeps

out the entire region ß*.

4. An interior region of a Jordan curve. Under the hypotheses of

Lemma 3.1, let h(c) he an arbitrary but fixed homeomorphic map-

ping of c onto a circle k. The images of c*, p, and £>< [see §3 for nota-

tion] will be denoted by

k* = h(c*),

(4.1) v=h(p),

Et = h(Dt) (i= 1, 2).

Then v is an arc of k with end points Ei, E2, and k* is a subset of v.

Let h(c) now be extended to each chord of c on p* [see §3(E)] and

to the chord d by the requirement that these cords map linearly onto

chords of k. This extends h(c) into a map h(c+d+p*). Let the images

of d and ¿u* [see §3] be

e = h(d),
(4.2.)

»••- A(/x*).

Then e is the chord EiE2 and v* is a simple arc from Ei to E2 on the

closure of the region y bounded by e+v. The arc v* is the union of

k* and a denumerable set of chords of k.

The image N = h(M) of M is the midpoint of e. As P* traces ^*

from Di to Z>2, its image Q* = h(P*) traces v* from Ei to E2, and the
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open segment NQ* sweeps out an approximation 7* to y, bounded

by e+v*. Let h now be extended over ß* by the requirement that it

map each segment MP* linearly onto the segment NQ*.

(A) This completes the extension of h(c) into a homeomorphic

mapping h(c+ß*) of c+ß* onto k+y*. The extension is uniquely

determined, given h(c) and the sector ß.

Theorem 4.1. Under the hypotheses of Lemma 3.1, an arbitrary

homeomorphic mapping h(c) of c onto a circle k can be extended into a

homeomorphic mapping H(á) of ä onto K, where K is the interior of k.

Let d = DiD2 be an arbitrary chord of c on a. Let ß*, 7* be ap-

proximations, as defined in §3(D), to the two sectors into which d

separates a. Let «i denote the union of ß*, y* and the open segment

DiD2.

(B) By the extension process of statement (A), let h(c) be extended

over both ß* and y*, hence over 5i. This defines a homeomorphic mapping

Hi(äi + c) of äi+c onto a certain subset Ki + k of K.

The definition of Hi(äi + c) is the first step of a recurrent process,

based on the following hypothesis, which is easy to verify for j= 1.

Hypothesis. For some positive integer j, the sets a¡, Ki and the

homeomorphisms Hi (i=l, 2, ■ ■ ■ , j) have been so defined that:

(1) The domain of Hi is äi+c, where at- is a 2-celI on a.

(2) The boundary of at is a simple closed curve c¡ which is the

union of a point set cf on c and a denumerable set of chords of c on a.

(3) The image ki = Hi(ci) is the union of a subset k?=Hi(c?) of k

and a denumerable set of chords of k.

(4) The mapping Hi is linear between the chords of c on c¿ and

the chords of k on ki.

(5) Each map Hi+i is an extension of Hi and of h(c).

Let di (i=l, 2, ■ ■ ■ ) denote the chords of c on c¡. Of the two

sectors into which di separates a (see Lemma 3.1), let ßi be the one

which contains no point of a¡, and let ß* be the approximation to

ßi defined in §3(D).

(C) The region a¡+i is now defined as

(4.3) aj+i = «,- + E ß* + Z d'i

where di is the chord ¿¿ without its end points. The homeomorphism

Hj+i is now defined on äj+i — äj by extending h(c) over each ß\, using

the process of (A) above. On Cj, this extension agrees with H¡, as a

consequence of the linearity requirements in the extension process

and in part (4) of the above hypothesis.
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On äj, let Hj+i he defined as identical with Hj. It is then easy to

verify the above Hypothesis with j+i in place of j where

^i+i = •ffj'+i(«)'+i).
(4.4)

kj+i — Hj+i(cj+i).

Lemma 4.1. For any e>0, there exists an integer j so large that every

circular region of radius e about a point on c contains a sector on a out-

side aj and cut off by a chord of Cj. In other words, the regions of Fig. 3.1

become uniformly small as j increases.

Suppose the lemma false. As a consequence of the recurrent process

for defining the regions a¡, it follows that, for some e > 0, there exists at

least one circular neighborhood of radius e with center on c contain-

ing no point of ¿^c*.

Let Co be a maximal arc of c— ^cf, and let Po, Po' be its end

points . Let N, N' be the circular neighborhoods about P0, Po' respec-

tively each of radius d(Po, Po')/3. By definition of c0, it is possible

to find two points (Di, D2) such that (1) Z>i and D2 are the end points

of a chord d of c on the curve c,- [see Hypothesis, Part (2) ] for some

value of i. (2) If ci is the arc of c which has Di, D2 for end points and

contains c0, then (ci —c0)E(N+N'). (3) Dx and D2 are so close to

Po and Po' respectively, that the perpendicular bisector n of d does

not meet N+N'. In the extension process, a point of c¡*+1 is common

to n and c¡, hence is on the arc c0. Since this contradicts the definition

of c0, Lemma 4.1 is proved.

Corollary. Every point of a is on one of the 2-cells a,-.

Assume the contrary, and let Q be a point on a— ¿2iai- For each

value of i, there is a chord di on c¿ which separates a into two sectors,

one of which, ßit contains Q, while the other contains a,-. Let e¿ be the

arc of c on ßi. Then, as a consequence of Lemma 4.1, there is just one

point Q* common to all the arcs e¿. For * large enough, any given

neighborhood N(Q*) will contain di+c( and hence ßi. Since N(Q*)

need not contain Q, the corollary follows.

Now let H be defined as the common extension of all the homeo-

morphisms Hi. By the above corollary, the domain of H is a + c.

Furthermore, H is continuous on a. Its continuity on a follows from

the continuity of the Hi, while its continuity at points on c follows

from Lemma 4.1. Hence the mapping H fulfills the requirements of

Theorem 4.1.

Let i»i and b2 denote two Jordan curves, each with an interior, and

let ßi he a 2-cell with o¿ for boundary (*«■!, 2), in accordance with
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Theorem 4.1. Suppose the intersection of bi and b2 is an arc b, where

èi — b is exterior to b2 and b2 — b is exterior to bi. Let b' denote b with-

out its end points, and let

(4.5) ß = ßi + b' + ß2.

(D) As a corollary to Theorem 4.1, ß is a 2-cell with bi+b2 — b' for

boundary, and any homeomorphism between this boundary and a circle

k can be extended into a homeomorphism between ß and K (see Theorem

4.1 for notation). It will be said that ß is obtained by amalgamating

ßi and ß2 across b.

5. Completion of the proof.

Lemma 5.1. Let c satisfy the hypotheses of Lemma 3.1 and hence of

Theorem 4.1. Let g be a simple arc joining two distinct points Pi and

P2 of c and lying on a, save for Pi, P2. Let Ci, c2 be the two arcs into

which Pi, P2 divide c. Then g separates a into two 2-cells au a2 where

«i has g+Cifor boundary (i=i, 2).

Proof. By Theorem 4.1, the lemma reduces to the case where c is

a circle and a is its interior. If g did not separate a, a polygonal

arc p could be constructed joining Ci to c2 on a without meeting g.

This arc p could be completed outside c to a simple closed polygon.

By Theorem 2.1, using an arc of circle instead of a polygonal path,

such a polygon must separate Pi from P2 and hence must intersect g,

contrary to its definition. It follows that g+Ci satisfies the hy-

potheses of Theorem 4.1. Let a,- be a 2-cell bounded by g+Ci in accord-

ance with that theorem. By §4(D), «i and a2 can be amalgamated

across g to obtain the 2-cell, a, bounded by c.

Next consider an arbitrary simple closed curve c. Let p be a simple

closed polygon, meeting c in just two points, Pi and P2, and other-

wise exterior to c. Such a polygon is easy to define, if Pi and P2 are

chosen as points of maximum and minimum ordinates, respectively,

on c.

Let Ci and c2 be the two arcs into which Pi and P2 divide c. As a

consequence of Theorem 2.1 and Lemma 5.1, c, separates the interior,

p, oí p into two 2-cells af and p\-, one of which, p\-, contains c¡

(i=\,j = 2) and (i = 2,j = l). Similarly, dseparatesß2 into two 2-cells,

one of which, a, has Ci + c2 for boundary. Any point on a is interior to

c, since any arc joining it to p must meet either Ci or c2. This estab-

lishes the following result.

Lemma 5.2. Any Jordan curve has an interior.

Now let «i and a be amalgamated across ci [see §4(D)] and let
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the resulting 2-cell be amalgamated with cv2 across c2 to obtain a

2-cell p with p for boundary. By Theorem 2.1, p is the interior of p.

Since «i and a2 are exterior to c, the 2-cell a constitutes the entire

interior of c. The Jordan-Schoenflies Theorem now follows readily

in all its generality.

University of Illinois

A NOTE ON CURVATURE AND BETTI NUMBERS

H. GUGGENHEIMER

1. S. Bochner has proved the following theorem [2]:1 Let M{m)

be a closed manifold with complex structure [4; 7] of complex

dimension m, on which there exists a Kähler-metric [2; 3; 5]2

(1) ds2 = gi^dz'dz*),3

dgik' = dgik-

dzi dZi

Let Rue- denote the Ricci tensor and

(3) Phi'jk'   =   Rhi-jk'-— (ghi'Rjk' + ghk'Ri'j)
m + 1

the tensor of projective curvature. In every point of Mim) we form

the numbers

(4) L - in,  - *"«*

(5) P = sup
f

Pki-jk-thi'Vk'

with all vectors Í* and skew-symmetric tensors £'* attached to the

point in question. If

(6) L > 0
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1 Numbers in brackets refer to the bibliography at the end of the paper.

2 Products of differentials in parentheses denote ordinary products, products

without parentheses are skew products.

3 We denote by i* the index relative to ***.


