
AN EMBEDDING OF PI-RINGS

A. S. AMITSUR

1. Introduction. It is well known that a commutative ring which

has no nonzero nilpotent ideals is isomorphic to a subring of a com-

plete direct sum of commutative fields (McCoy [l]).1 In this note,

this fact is generalised to rings which satisfy a polynomial identity

(Pi-rings). We show that every Pl-ring which has no nilpotent ideals2

is isomorphic to a subring of a complete direct sum3 of central simple

algebras whose order over their centre is bounded. As a consequence

we prove that these rings are subrings of matrix rings over commuta-

tive rings. This implies an extension of a result of [2 ] concerning the

minimal identity of a simple algebra. We prove that for a Pi-ring

which has no nonzero nilpotent ideals, the standard identity Sd(x)

= 0, where d is an even integer, is the unique (up to a numerical

factor) minimal identity which is linear in each of its indeterminates.

The term standard identity was ascribed in [2] to the polynomial

identity:

Sd(x) = Sd(xi, ■ • • , xd) = 2~1 ±xh • • • xid = 0
(•)

where the sum ranges over all permutations (i) of d letters, and the

sign is positive for even permutations and negative for odd permuta-

tions.

Notations. A polynomial identity of minimum degree satisfied by

a Pi-ring R will be called a minimal identity oí R. We shall refer to a

polynomial identity which is linear and homogeneous in each of its

indeterminates as a linear identity. We shall use the following three

types of semi-simplicity: a ring R is said to be

(a) J-semi-simple, if R is semi-simple in the sense of Jacobson

[3], that is, if the quasi-regular radical of R is zero.

(b) K-semi-simple, if R does not contain any nonzero nil ideals.

(c) A-semi-simple, if R has no nonzero nilpotent ideals.

2. The ring 2?[jc]. We denote by R[x] the ring of all polynomials

in the commutative indeterminate x over R. In this section we deal

with properties of R[x] induced by R.
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1 Numbers in brackets refer to the bibliography at the end of the paper.

' Ideals will always mean two-sided ideal.

3 For definition of (complete) direct sums and of subdirect sums see, for example,

[1. P. 121].
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Lemma 1. Let P be a nonzero ideal in R[x] and let p(x) =a0+ • • •

+anxn (ffn^O) be a polynomial of minimum degree in P. Then if bER

such that anb = 0 for some integer p, then a„~1p(x)b = 0.

Indeed, the coefficient of xn in an~l p(x)bEP is a1,b = 0, that is,

this polynomial is of lower degree than that of p(x). Hence the

minimality of the degree of p(x) implies that an~1p(x)b = 0.

Corollary. If r(x)ER[x] such that anr(x)=0 for some integer p,

then anp(x)r(x) = 0 for every integer \^p—l.

This follows immediately by the preceding lemma, since each of

the coefficients of r(x) satisfies the condition of that lemma.

We prove now the following fundamental lemma:

Lemma 2.4 If R is a K-semi-simple ring, then R[x] is J-semi-simple.

Proof. Assume that R[x] is not J-semi-simple. Denote by Jx the

nonzero Jacobson's radical of i?[x]. It is readily verified that the

totality of the coefficients of the highest power of the polynomials

of Jx of degree n—where n is the minimal degree of the nonzero

polynomials of Jx—constitute a nonzero ideal in R. The lemma will

be proved if it is shown that this ideal is a nil ideal, that is, that if

p(x)=aa+axx+ ■ ■ ■ +anxn is a nonzero polynomial of minimum

degree in Jx, then a£ = 0 for some integer p.

To this end we consider the polynomial p(x)xan (which belongs to

Jx, since p(x)EJx and xa„ER[x]) and its quasi-inverse q(x). By

Lemma 1 of [3] and Theorem 2 of [3] it follows that

(1) p(x)xa„ + q(x) + p(x)xanq(x) = 0,

(2) p(x)xan + q(x) + q(x)p(x)xan = 0.

By (1) we obtain that q(x) =xt(x),5 t(x)ER[x]. Put s(x) =p(x)an.

Then (1) implies that xs(x)+xt(x)+x2s(x)t(x) =0. Hence,6

(3) s(x) + t(x) + xs(x)t(x) = 0.

Similarly, we obtain from (2) that

(4) s(x) + t(x) + xt(x)s(x) = 0.

Suppose ant(x) ¿¿0 for every integer p. Let v be the minimal degree

of the polynomials ant(x). Write

4 If R is commutative, this lemma is a consequence of [7, Corollary 8.1].

1 If R does not possess a unit and a:^i?[a;], we adopt the notation xt(x) (similarly

t(x)x) for the polynomial xbo+ • • ■ +xn+1bn, where t(x)=bo+ • ■ • +xnbn.

6 Since xm(x) = 0 if and only if m{x) =0.
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(5) t(x) = h(x) + x'+H2(x),

where ti(x)=bo+biX+ ■ • ■ +b,x". The minimality óf v implies that

(6) ajb, 5^ 0 for every integer u,

and

(7) ant2(x) = 0 for every ¡j, greater than some integer r.

The polynomial s(x) =p(x)an is of minimum degree in Jx, and its

highest coefficient is a„. Hence, since anßt2(x) =0 (for m^tt), it follows

by the corollary of Lemma 1 that

(8) ans(x)t2(x) = 0 for every m ^ 2ir.

Substituting (5) into (3) and multiplying this equation on the left

by ö£, where X = 2x, we obtain, by (7) and (8),

ans(x) + a„ti(x) + xans(x)h(x) = 0.

The degree of both a\s(x) and a„ti(x) is less than n+v + l, and the

coefficient of xn+"+1 of xa\s(x)ti(x) is al+2bv. Hence al+% = 0. But this

contradicts (6); hence our assumption that ant(x)5¿0, for every

integer ¡x, is false. Thus ant(x)—0 for some integer X. Now multipli-

cation of (4) on the left by a* yields a^s(x) =0; hence an+2 = 0, q.e.d.

3. A-semi-simple Pi-rings.

Lemma 3. If R is a Pl-ring, then R[x] is also a Pl-ring, and the

totalities of the linear-identities of R and R[x], respectively, coincide.

The first part of the lemma follows from the fact that R satisfies

a linear identity (Lemma 2 of [4]), and this identity is evidently

satisfied by i?[x]. If we assume that the operators of R, which are the

coefficients of the identities of R, were extended to operate on R[x]

by defining a( ^a,ï") = 2~2(aav)x", the rest of the lemma is readily

verified.

The following lemma follows immediately:

Lemma 4. A necessary and sufficient condition that a subdirect sum

of a set of Pi-rings {Qa} satisfies an identity F(xi, • • • , xm) = 0 is that

each of the rings Qa satisfies the identity F = 0.

We recall that a Pl-ring R is said to be of degree d [5] if d is the

minimal degree of the polynomial identities satisfied by R.

Remark. It has been shown in [2] that a central simple algebra A

of order n2 over its centre is a Pl-ring of degree 2«, and the minimal
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linear-identity of A is the standard identity S2n(x)=0, uniquely de-

termined up to a numerical factor. Evidently, A satisfies also the iden-

tities Sn(x) =0 for every m 2:2«.'

We prove now:

Theorem 1. If R is a J-semi-simple Pi-ring of degree d, then

(1) d = 2m.

(2) The ring R is a subdirect sum of a set of central simple algebras

{A a} such that m2 is the upper bound of the orders of these algebras over

their centres.

(3) The standard identity S¿(x) — 0 is the unique (up to a numerical

factor) minimal linear-identity of R.

Proof. Since R is J-semi-simple, R is a subdirect sum of primi-

tive rings {Aa} (Theorem 28 of [3]), Lemma 4 implies that each

A a is a Pi-ring of degree not greater than d. Hence, by Theorem 1

of [4 ] and by consequence 2 of [S ] it follows that each A a is a central

simple algebra of order not greater than [¿/2]2. Let m2 be the upper

bound of the orders of the algebras Aa; then m¿ [d/2]. By the pre-

ceding remark it follows that each Aa satisfies the identity S2m(x) = 0.

Thus, Lemma 4 implies that this identity is satisfied, as well, by

their subdirect sum R; hence, d ^ 2m. On the other hand, 2m g 2 [d/2]

^d. Hence m= [d/2] and d = 2m. This completes the proof of the

first two parts of the theorem. Since the upper bound m2 is achieved

by some Aß, and the minimal identities of R, whose degree is 2m, are

also identities of this algebra, the proof of the third part of our

theorem follows immediately by the preceding remark, that is, by

Theorem 7 of [2].

We turn now to the main theorem of this paper:

Theorem 2. Let R be an A-semi-simple Pi-ring of degree d, then

(1) d = 2m.

(2) The ring R is a subring of a complete direct sum of central simple

algebras {Aa} such that m2 is the upper bound of the orders of these

algebras over their centres.

(3) The identity Sd(x)=0 is the unique (up to a numerical factor)

minimal linear-identity of R.

Proof. Since R is a Pi-ring which is A-semi-simple, the corollary

of Theorem 4 of [5] implies that R is also K-semi-simple; hence by

Lemma 2 it follows that R[x] is J-semi-simple.

In the light of Lemma 3, the application of the preceding theorem

to the ring R[x] yields the first and the third parts of the theorem.

7 Compare with Remark 6 of [2].
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The rest of the theorem follows now immediately from the preceding

theorem since R is a subring of R[x] which is, by Lemma 3, a Pl-

ring of degree d.

Let R[x] be a subdirect sum of the central simple algebras {-4a}.

By Lemma 4 it follows that the set of the identities satisfied by every

A coincides with the set of the identities of the complete direct sum

2^,Aa as well as with the totality of the identities of R[x]. Hence we

obtain, by Lemma 3, the following corollary.

Corollary 1. The set of the linear identities of the Pl-ring R is

the same as the set of the linear identities of the complete direct sum

2>„.
Let {Aa} be a set of central simple algebras of orders not greater

than m2. Then each of these algebras satisfies the identity S2m(x) =0.

Lemma 3 implies, therefore, that the complete direct sum 2~lAa

satisfies the same identity S2m(x) = 0. A combination of this fact and

the preceding theorem yields:

Corollary 2. A necessary and sufficient condition for an A-semi-

simple ring to satisfy a polynomial identity is that it be isomorphic to a

subring of a complete direct sum of central simple algebras of bounded

order.

Another immediate consequence of the preceding theorem is:

Corollary 3. Every Pl-ring of odd degree contains nonzero nilpotent

ideals.

Consider the ring R and the central simple algebras A a of Theorem

2. Let Fa be a splitting field of the algebra Aa. Then Aa is isomorphic

with a subring of the total matrix algebra Fam of order m2 over Fa.

The complete direct sum ^F„ of the matrix algebra {Fam} con-

tains, therefore, a subring isomorphic with the complete direct

sum 2~lA a. Thus it follows by Theorem 2 that R is isomorphic with

a subring of 2~1 Fam. It is readily verified that 2~1 Fam is isomorphic

with the total matrix ring Fm of order m2 over the complete direct

sum F = 52,Fa of the fields {Fa }. Since F is a direct sum of fields, F

is a commutative A-semi-simple ring. Hence, we obtain:

Theorem 3.8 // R is a Pl-ring of degree d without nilpotent ideals,

then d = 2m and R is isomorphic with a subring of a total matrix ring

of order m2 over a commutative ring which does not contain nilpotent

ideals.

8 This result has been pointed out to me by the referee.
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Let R be a subring of a total matrix ring of order m2 over a com-

mutative ring. By the proof of [2, Theorem l] it follows that R is a

Pi-ring which satisfies the identity S2m(x) = 0. Hence, a combina-

tion of this fact and the preceding theorem yields:

Corollary. An A-semi-simple ring R is a PI-ring if and only if R is

isomorphic with a subring of a total matrix ring over a commutative ring.

4. Identities for Pi-rings. Denote by N = N(R) the radical of the

Pi-ring R, that is, the join of all nilpotent ideals of R.

In this section we apply the preceding results to obtain identities

satisfied by the quotient ring R/N(R).9

Let R be a Pi-ring of degree d, and let U(R) denote the lower

radical of R. Since R/U(R) is an A-semi-simple Pi-ring, it follows

by Theorem 2, that:

Theorem 4. If R is a Pi-ring of degree d, and U(R) is the lower

radical of R, then R/U(R) satisfies the identity S2m(x) =0, where 2m^d.

Theorem 5. Let Rbe a PI-ring of degree d such that its radical N(R)

is a nilpotent ideal of index not greater than p, then S satisfies the

identity

(9) H S(xiu ■ • ■ xu) = 0.
t=i

Proof. The condition of the theorem implies that U(R)=N(R).

Hence, by the preceding theorem, R/N(R) satisfies each of the

identities S(xn, • ■ ■ , xtó)=0. Since N(Ry — Q, it is readily seen that

R satisfies the identity (9).

By Theorem 2 of [ö] it follows that the radical of the quotient ring

R/N(R), where R is a Pi-ring of degree d, is a nilpotent ideal of index

not greater than [d/2]. Hence we have the following corollary.

Corollary. // R is a Pi-ring of degree d, then R/N(R) satisfies the

identity J]}fll] S(xn, • • • , *«)=0.

In a process similar to that of the Laplace expansion of deter-

minants one can readily prove that

ànyXi,   '   '   '   ,   Xn)   ==    / .   ZtOfc^tj, ,   XiyOn—H*^ífc+.1J ,   XinJ

where the sum ranges over all Cn.k different selections of k letters

ii, •••»*» out of n letters, and where ik+i, ■ • • ,in denotes the comple-

ment of the set ii, • • • , ik. This readily implies that the standard

Compare with Theorem 9 and its remark of [2],
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identity SPq(x) =0 can be expressed as a sum of a set of q products

of standard identities each of which is of degree p. Hence by the pre-

ceding corollary it follows that:

Theorem 6. If R is a Pl-ring of degree d, then R/N(R) satisfies the

standard identity Sp(x) =0, where p = d[d/2].
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