CERTAIN CONGRUENCES ON QUASIGROUPS

H. A. THURSTON

1. Using the ideas of [1], we define a lattice-isomorphism between the reversible congruences on a quasigroup and certain congruences on its group of translations. This may be used to get certain properties of the quasigroup congruences from those of the translation-group congruences; for example, it gives a new proof that reversible congruences on a quasigroup are permutable (a proof of this has been given in [3]).

NOTATION. A relation θ in a set S is a set of ordered 2-sets of elements of S. If $(a, b) \in \theta$, we say "a is in the relation θ to b"; the shorter notation $a\theta b$ will sometimes be used for this. For example, a mapping $x \rightarrow x\theta$ may be taken to be the set of all $(x, x\theta)$ and is then a relation in this sense.

 θ^{-1} is the set of all (a, b) for which $b\theta a$.

 $\theta \phi$ is the set of all (a, b) for which $a\theta c\phi b$ for some c.

Clearly θ^{-1} and $\theta \phi$ are relations in S if θ and ϕ are.

If q is an equivalence (that is, if $q^{-1} = qq = q$), then aq is the set of all elements in the relation q to a.

2. Given a quasigroup whose set of elements is S it is possible to give definitions² of two operations / and \setminus :

a/b is the x for which $x \cdot b = a$.

 $a \setminus b$ is the x for which $a \cdot x = b$.

Clearly

$$(1) (a/b) \cdot b = a, a \cdot (a \setminus b) = b, (a \cdot b)/b = a, a \setminus (a \cdot b) = b.$$

On the other hand, if we have an algebra \mathcal{E} whose set of elements is S, whose operations are \cdot , /, and \setminus , and for which (1) is true, then the algebra S with the operation \cdot and elements S is a quasigroup. \mathcal{E} is equationally defined: it might possibly be named an equasigroup.

3. DEFINITION. A congruence \mathfrak{q} on a quasigroup is reversible if (i) aqb whenever acqbc and (ii) aqb whenever caqcb. Clearly a congruence on \mathfrak{S} is reversible if and only if it is a congruence on \mathfrak{E} . Equally clearly, S/\mathfrak{q} is a quasigroup under the Kronecker operation \cdot if and only if \mathfrak{q} is reversible. (The reversible property is needed for cancellation to be possible.)

Received by the editors November 6, 1950 and, in revised form, February 27, 1951.

¹ Numbers in brackets refer to the bibliography at the end of the paper.

² The notation is from [2].

- 4. DEFINITIONS. ρ_a is the mapping $x \rightarrow x \cdot a$, and λ_a is $x \rightarrow a \cdot x$. The translator, Σ , of S (or of E) is the group generated by all ρ_a and λ_a for all a of S, and is a permutation group on S.
- 5. Now we give a relation between congruences on \mathcal{E} and congruences on Σ . Clearly an equivalence \mathfrak{q} on S is a congruence on \mathcal{E} if and only if $x\sigma \mathfrak{q} y\sigma$ whenever $x\mathfrak{q} y$ and $\sigma \in \Sigma$; that is, if and only if $\sigma^{-1}\mathfrak{q}\sigma \subseteq \mathfrak{q}$ for every σ of Σ . From now on the letter \mathfrak{q} will be used only for congruences on \mathcal{E} .

DEFINITION. q^{\dagger} is the relation in Σ for which $\theta q^{\dagger} \phi$ if and only if $\theta^{-1} \phi \subseteq q$.

If $\sigma \in \Sigma$, then $xq \to (x\sigma)q$ is a mapping, $\bar{\sigma}$ say, of S/q into S/q. For if xq = yq, then xqy. Therefore $x\sigma qy\sigma$ and so $x\sigma q = y\sigma q$. The mapping $\sigma \to \bar{\sigma}$ is a homomorphism (that is, $\sigma \tau \to \bar{\sigma}\bar{\tau}$) and q^{\dagger} is its kernel. Therefore q^{\dagger} is a congruence on Σ .

Note. Clearly q[†]⊇p[†] if q⊇p.

6. From now on the letter p will be used only for congruences on Σ . Definition. p^{\downarrow} is $U\theta^{-1}\phi$ (over all θ , ϕ for which $\theta p\phi$).

It is not hard to see that p^{\downarrow} is a congruence on \mathcal{E} . For (i) clearly $p^{\downarrow} = (p^{\downarrow})^{-1}$. (ii) Let $(a, b) \in (p^{\downarrow})^2$. Then, for some c, $ap^{\downarrow}cp^{\downarrow}b$. Therefore $a\theta^{-1}\phi c$ and $c\psi^{-1}\chi b$, where $\theta p\phi$ and $\psi p\chi$. Then $a\theta^{-1}\phi = c = b\chi^{-1}\psi$ and so $(a, b) \in \theta^{-1}\phi\psi^{-1}\chi = (\phi^{-1}\theta)^{-1}\psi^{-1}\chi$. But $\phi^{-1}\theta p\phi^{-1}\phi = \iota = \psi^{-1}\psi p\psi^{-1}\chi$. Therefore $ap^{\downarrow}b$, and so $(p^{\downarrow})^2 \subseteq p^{\downarrow}$.

(iii) Let $(a, b) \in \sigma^{-1} p^{\downarrow} \sigma$ where $\sigma \in \Sigma$. Then

$$(a, b) \in \sigma^{-1}\theta^{-1}\phi\sigma \qquad \text{(where } \theta p\phi)$$

$$= (\theta\sigma)^{-1}(\phi\sigma) \qquad \text{(where } (\theta\sigma)p(\phi\sigma))$$

$$\subset p \downarrow.$$

Note. Clearly $p^{\downarrow} \supseteq q^{\downarrow}$ if $p \supset q$.

- 7. $p \subseteq q^{\dagger}$ if and only if $p^{\dagger} \subseteq q$. For, by the definition of q^{\dagger} , $p \subseteq q^{\dagger}$ if and only if (i) $\theta^{-1}\phi \subseteq q$ whenever $\theta p\phi$. And (i) is true, by the definition of p^{\dagger} , if and only if $p^{\dagger} \subseteq q$. Then if $p = q^{\dagger}$ we have $p^{\dagger} \subseteq q$, that is $q^{\dagger \dagger} \subseteq q$. On the other hand, if aqb, let u be any element of S and put $a = u\lambda_v$, $b = u\lambda_w$. Then vqw (because q is reversible), and so, for any x of S, $x\lambda_vqx\lambda_w$. Therefore $\lambda_v^{-1}\lambda_w\subseteq q$, and so $\lambda_vq^{\dagger}\lambda_w$. But $(a, b) = (u\lambda_v, u\lambda_w) \in \lambda_v^{-1}\lambda_w$. Therefore $aq^{\dagger \dagger}b$. Therefore $q^{\dagger \dagger}\supseteq q$ and so $q = q^{\dagger \dagger}$. Therefore \uparrow is a one-to-one mapping of the set of all congruences on $\not\in$ into the set of congruences on Σ , and \uparrow is $(\uparrow)^{-1}$. By notes 5 and 6, this mapping is an isomorphism between the lattice of congruences on \mathcal{E} and a sublattice of the lattice of congruences on Σ .
 - 8. Any two congruences on E are permutable. Let p and r be any

two congruences on \mathcal{E} . Any congruence on a group is given by a normal subgroup: let the congruences \mathfrak{p}^{\dagger} and \mathfrak{r}^{\dagger} be given by subgroups Π and P. Then, for every a of S, $a\mathfrak{p}=a\Pi$. For if $b\in a\mathfrak{p}$, let u, v, and w be as in §7. Then $b=a\lambda_{\bullet}^{-1}\lambda_{w}$ where $\lambda_{\bullet}^{-1}\lambda_{w}\in\Pi$. Therefore $a\mathfrak{p}\subseteq a\Pi$. On the other hand, if $b\in a\Pi$, then $b=a\theta$ where $\theta\in\Pi$ and so $\theta\mathfrak{p}^{\dagger}\iota$. Then $a\theta\mathfrak{p}a\iota$; that is, $b\mathfrak{p}a$, and so $b\in a\mathfrak{p}$. Therefore $a\Pi\subseteq a\mathfrak{p}$, and so $a\Pi=a\mathfrak{p}$. In the same way, $aP=a\mathfrak{r}$.

Now, if aprb, then for some c, $a \in qcp = c\Pi$ and $c \in br = bP$. Therefore $a \in bP\Pi = b\Pi P$. We may now let $a = b\theta \phi$ where $\theta \in \Pi$ and $\phi \in P$. Then $arb\theta$. But $bpb\theta$. Therefore arpb. Therefore $pr \subseteq rp$; that is, p and r are permutable.

9. An important point about this is that proofs have been given (for example, in [4, pp. 87-89]) of the Schreier-Zassenhaus theorem for algebras all of whose congruences are permutable and which have a one-element subalgebra. An equasigroup has not, in general, a one-element subalgebra, but the theorem is true in this form:

If E, A_1 , \cdots , A_m and E, B_1 , \cdots , B_n are normal series of an equasigroup E, and if $A_m \cap B_n \neq \emptyset$, then the series have isomorphic refinements.

BIBLIOGRAPHY

- 1. A. A. Albert, Quasigroups. I, Trans. Amer. Math. Soc. vol. 54 (1943) p. 507
- 2. T. Evans, Homomorphisms of non-associative systems, J. London Math. Socvol. 24 (1949) p. 254.
- 3. G. Trevisan, A proposito delle relazioni di congruenza sui quasi-gruppi, Rendiconti del Seminario Matematico della Università di Padova vol. 19 (1950) pp. 367-370.
- 4. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, vol. 25, rev. ed., 1948.

University of Bristol