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1. Using the ideas of [l],1 we define a lattice-isomorphism be-

tween the reversible congruences on a quasigroup and certain con-

gruences on its group of translations. This may be used to get certain

properties of the quasigroup congruences from those of the transla-

tion-group congruences; for example, it gives a new proof that re-

versible congruences on a quasigroup are permutable (a proof of this

has been given in [3]).

Notation. A relation 6 in a set 5 is a set of ordered 2-sets of ele-

ments of 5. If (a, b) EO, we say "a is in the relation 8 tob"; the shorter

notation adb will sometimes be used for this. For example, a mapping

x—>xd may be taken to be the set of all (x, xd) and is then a relation

in this sense.

0_1 is the set of all (a, b) for which bOa.

dd> is the set of all (a, b) for which adabb for some c.

Clearly 0_1 and 6<b are relations in S if 6 and (b are.

If q is an equivalence (that is, if q-1 = qq = q), then aq is the set of

all elements in the relation q to a.

2. Given a quasigroup whose set of elements is S it is possible

to give definitions2 of two operations / and \:

a/b is the x for which x ■ b = a.

a\b is the x for which ax = b.

Clearly

(1)       (a/b)-b = a,   a(a\b) = b,    (a-b)/b - a,   a\(ab) = b.

On the other hand, if we have an algebra £ whose set of elements is

S, whose operations are -, /, and \, and for which (1) is true, then

the algebra S with the operation • and elements S is a quasigroup.

£ is equationally defined : it might possibly be named an equasigroup.

3. Definition. A congruence q on a quasigroup is reversible if (i)

aab whenever acabe and (ii) aqb whenever caacb. Clearly a con-

gruence on S is reversible if and only if it is a congruence on £.

Equally clearly, 5/q is a quasigroup under the Kronecker operation

• if and only if q is reversible. (The reversible property is needed for

cancellation to be possible.)
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1 Numbers in brackets refer to the bibliography at the end of the paper.

2 The notation is from [2].
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4. Definitions. p„ is the mapping x—*x ■ a, and X„ is £—>a • x. The

translator, 2, of S (or of £) is the group generated by all p0 and X„

for all a of S, and is a permutation group on S.

5. Now we give a relation between congruences on £ and con-

gruences on 2. Clearly an equivalence q on S is a congruence on £

if and only if xaaya whenever xay and o_£2; that is, if and only if

o--1q<rÇq for every a of 2. From now on the letter q will be used only

for congruences on £.

Definition. qT is the relation in S for which Oq*d> if and only if

0-tyÇq.
If o*£2, then xq—>(x<r)q is a mapping, à say, of S/q into S/q. For

if xq=yq, then xqy. Therefore ¡ctrqyo- and so x<rq =y<rq. The mapping

o—ra is a homomorphism (that is, CT-^âr) and qT is its kernel. There-

fore qT is a congruence on 2.

Note. Clearly qT2pT if q2p-

6. From now on the letter p will be used only for congruences on 2.

Definition. p+ is Ud~l<j> (over all 0, <p for which 6pfa.

It is not hard to see that p* is a congruence on £. For (i) clearly

p+= (p+)-1. (ii) Let (a, b)E(p^)2. Then, for some c, aplcplb. Therefore

aSrxfa and cyp~xyf), where 6pcf> and ^px- Then ad~l<p = c = bx~lyp and

so (a, è)G0-W~1X = (</>~10)~V'~1X- But faidpfal<p = i = yp-^pyp~lx.
Therefore ap*ô, and so (p*)2£p*.

(iii) Let (a, 6)G<r-1pV where <r£2. Then

(a, b) E o-l&-l4>o- (where 0ptf>)

= (do-)-l(<ba) (where (do-)p(<bo-))

Çp+.

Note. Clearly p*2q* if pD<Z-

7. pÇqt */ a«d ow/y if p*Çq. For, by the definition of qT,

pÇjqT if and only if (i) 0_1<ÊÇq whenever 0p#. And (i) is true, by the

definition of p*, if and only if p*£q. Then if p = qT we have p+Çq,

that is qnÇq. On the other hand, if aqb, let u be any element of 5

and put a = u\,, b = u\w. Then vqw (because q is reversible), and so,

for any x of S, x\,qx\w. Therefore X^'X^Çq, and so X^q^«,. But (a, b)

= (ur\v, «X„)GX71Xt0. Therefore aq^b. Therefore qtJQq and so q = qw.

Therefore f M a one-to-one mapping of the set of all congruences on £

into the set of congruences on 2, and 4 is (t)-1- By notes 5 and 6, this

mapping is an isomorphism between the lattice of congruences on

£ and a sublattice of the lattice of congruences on 2.

8. Any two congruences on £ are permutable. Let p and r be any
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two congruences on £. Any congruence on a group is given by a

normal subgroup: let the congruences ^ and r* be given by sub-

groups Il and P. Then, for every a of S, ap=all. For if bEa$, let

u, v, and w be as in §7. Then ¿> = aXc-1X„ where Xj^X^Çn. Therefore

apÇalI. On the other hand, if ¿>£an, then b=ad where 0Cn and

so öp+t. Then aflpai; that is, 6pa, and so o Gap. Therefore all Cap, and

so an=ap. In the same way, aP = ar.

Now, if apr&, then for some c, aEqc\> = cH and cEbv = bF. There-

fore aGoPII = &riP. We may now let a = bQd> where 0GII and 06P.

Then axW. But bpbd. Therefore avpb. Therefore prÇrp; that is, p and r

are permutable.

9. An important point about this is that proofs have been given

(for example, in [4, pp. 87-89]) of the Schreier-Zassenhaus theorem for

algebras all of whose congruences are permutable and which have a

one-element subalgebra. An equasigroup has not, in general, a one-

element subalgebra, but the theorem is true in this form :

If E, Ai, • ■ ■ , Am and E, Bi, ■ ■ • , Bn are normal series of an

equasigroup E, and if Amf\Bn9i0, then the series have isomorphic

refinements.
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