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1. The present note contains several remarks on an earlier paper

by the author [2].1 In Chapter IV, §4, which deals with the ques-

tion of when we can have equality of modules for a triply-connected

domain and a proper subdomain, the last sentence was added in proof.

This accounts for the apparent disparity between it and the preced-

ing one. In order to justify this statement we observe first that

equality of the modules for triply-connected domains implies equality

of the modules for the hexagons into which the domains are divided

by their lines of symmetry. Thus by Theorem 5 and the remarks

preceding Theorem 2a in [2], the value of ai:a2:a3 in question must

give rise to a degenerate case for each domain. The canonical domains

will be of type 2, 4, or 5, the cases rising being those indicated on p.

344 in [2]. For the triply-connected domains there is a symmetric

mapping of the one into the other characterized by the type of the

canonical domains in question. We observe that for the functions f de-

fined by equations (1), (2), (3) on pp. 339-340 in [2] if we set (dÇ/dz)2

= Q(z) and choose the constant C appropriately, then Q(z)dz2 is a

positive quadratic differential of the triply-connected domain. The

zeros of this quadratic differential lie at z* and its symmetric point in

cases (1), (2), and at z*, z** in case (3).

If we count boundary zeros with half their multiplicity, the total

multiplicity of the zeros is 2 in each case (as also would follow from

the general theory). Indeed these give all the positive quadratic

differentials of the triply-connected domain (see [3]). In the canonical

domain of type 2 the point A in Fig. 3 corresponds to such a zero. In

the canonical domain of type 4 the points corresponding to zeros

are A and Ai (for the case drawn) and in the canonical domain of

type 5 they are A6 and Ae (for the case drawn). The cases where

equality of modules may occur are those illustrated in Fig. 5. They

correspond to the following situations in order: (i) The subdomain is

obtained from the original domain by producing slits out from the

zeros of Q(z)dz2 into the domain along the curves on which Q(z)dz2

>0 (corresponding to the vertical segment through A in the domain

in Fig. 3), these slits are symmetric with respect to the line of sym-

metry; (ii) the subdomain is obtained from the original domain by
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producing a slit out from a boundary zero on the line of symmetry

to the other zero (which is interior and must lie on the line of sym-

metry, Q(z)dz2 being positive on this slit) and then having the slit

fork out symmetrically along the other two curves on which Q(z)dz2

>0 passing through the latter zero, in this case the quadratic dif-

ferential induced on the subdomain corresponds to a canonical do-

main of type 2; (iii) the subdomain is obtained from the original

domain by producing a slit out from a boundary zero on the line of

symmetry but not reaching out beyond the other zero (as it did

above) ; (iv) the subdomain is obtained from the original domain by

producing two slits out from boundary zeros on the line of symmetry

(necessarily on the same connected piece of the line of symmetry in

the domain). It is clear that any domain has all these types of sub-

domains giving equality of the modules for particular values of

ai:a2:a3. The statement made in [2] was that in the third and fourth

cases the subdomain could not be mapped into the original domain in

any other way subject to the given topological restrictions. This is

not so in the first two cases but we are able to characterize all pos-

sible such mappings. Let us consider in each situation the metric

| Q(z)\ 1/2|áz| where Q(z)dz2 is the associated quadratic differential in

the original domain. We shall call it for short the Q-metric and it

corresponds to the Euclidean metric in the canonical domains. Now

let us consider the first case above. We suppose we are in the particu-

lar situation illustrated in Fig. 5, that is, the zeros of Q(z)dz2 are on

A^2 and the subdomain is obtained by producing two symmetric slits

out from them into D along the curves on which <2(z)âz2>0. Then, for

the subdomain, A^i, KJ coincide with A^i, Á^3. We may think of the

domain D as represented by the canonical domain together with its

reflection in its base with points on A^Ao, A3A1 being identified re-

spectively with their reflected images. To the vertical segment join-

ing A with its reflected image corresponds in D a curve L joining

the zeros of the quadratic differential and on which Q(z)dz2>0.

To the right of it the vertical segments give curves of class G of pre-

cise length 2ai. To the left of it the vertical segments give curves of

class C3 of precise length 2a3. These are the only curves of their re-

spective classes which have precisely this minimal length and we shall

call them, for short, trajectories. We note that L divides D into two

doubly-connected domains, say Ai with A^i on its boundary, A3 with

A^3 on its boundary, and that these curves are also trajectories for the

module problems in these domains.

Now suppose that we have a different admissible mapping <b(z)

of D' into D. The first possibility is that each trajectory goes into a
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curve having the same length, that is, 2ai for curves in class Ci, 2a3

for curves in class C3. By the remark above the image curve must

again be a trajectory. In particular KJ. must go into A^i, KJ must go

into A^3 (otherwise the subdomain would have a strictly smaller

module for all ai:a2:<z3). Consider a trajectory 71 in Ai. Since the

conformai map <b must preserve the module of the doubly-connected

domain bounded by A^i and 71, 71 must go into itself. Similarly each

trajectory in A3 must go into itself. Moreover the mapping of Ai

could only be a "conformai rotation," that is, correspond to a rotation

of the circular ring conformally equivalent to Ai. In the canonical

domain representation this corresponds to a vertical translation

modulo 2ai. Similar remarks apply to A3 and, since the mapping

<b must be continuous along L, the corresponding mapping in the

canonical domain would be a vertical translation with proper regard

to the identifications. Conversely any translation up or down by an

amount less than the length oí A A' (see Fig. 5) does give an ad-

missible conformai map <b of D' into D different from the identity.

Its image is obtained by lengthening one of the slits produced into D

and shortening the other by the same amount in the Q-metric. We

shall now see that these are the only possible admissible conformai

maps of D' into D.

Indeed, the alternative would be that some trajectory went into a

curve of greater length in the Ç-metric. Say a trajectory 71 in Ax

does so, going into a curve of length 2ai + 2d, d>0. Consider at a

point of 7i a little curve segment on which Q(z)dz2<0 (that is, on an

orthogonal trajectory of the trajectories). Then by continuity for an

interval on this curve sufficiently small in the Q-metric, say of Q-

length c, the trajectories meeting it will have images of Q-length at

least 2ai+d. The other trajectories go into curves of length at least

equal to their own. We now compute a lower bound of the area of the

image of D' in the Q-metric by the standard method [2, pp. 328-329

or pp. 331-332]. Indeed this is just the area of D' in the metric

p*(z)\dz\ =\Q(z)\ll2\fa(z)\ \dz\. For this we have for all 71 in Ai,
73 in A3

f  P*(z) I dzI =■ 2ah f  p*(z) \dz\£ 2a3
J y. «/ y

while for the special 71 in Ax meeting the above interval of Q-length c

p*(z) I dz I =■ 2fli + d.
/..
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Integrating these in the orthogonal direction in the canonical domain

we get (da element of Euclidean area in D)

f   P*(z) | Q(z) \"2do- ̂  2aißi + 2a^ + cd,
J D'

where ßi, ß3 are the lengths of A^Ai, A^Ao as usual. Then by the

standard argument

f   (p*(z))2do- ̂ 2aißi + 2a3ß3 + 2cd.
J D-

However the Ç-area of the image of D' cannot exceed the Q-area of

D and thus we have a contradiction.

The second case illustrated in Fig. 5 is treated in essentially the

same manner. All other conformai maps into D correspond to vertical

translations in the canonical domain and the images are obtained by

lengthening one prong of the fork and shortening the other by the

same amount in the Q-metric. That there are no other mappings is

proved in the same way as above.

In the third and fourth cases the discussion proceeds in the same

manner up to the point where the question of the "conformai rota-

tion" of the doubly-connected domains arises. This is now impossible

in view of the mapping <p being continuous along the segment of the

line of symmetry corresponding to A¿A¿ (or at A¿ in the extreme

case that this coincides with A in the third case). Hence there are now

no admissible mappings d> other than the identity in which each

trajectory goes into a trajectory of the same length. That there are

no admissible mappings where this fails follows in the same way as

above. This completes the discussion.

2. We observe further that for the conformai equivalence of hexa-

gons (and thus of triply-connected domains) it is sufficient to know

M(\, 0, 0) = M'(l, 0, 0),       M(0, 1, 0) = M'(0, 1, 0),

M(0, 0, 1) = M'(0, 0, 1).

Indeed if we map each hexagon on a half-plane the modules of the

quadrangles with vertices 1, 2, 3, 4; 3, 4, 5, 6; 5, 6, 1,2 are given in a

unique monotone manner in terms of the cross ratios of their vertices

[l, p. 343]. A similar remark is true for the vertices 1', 2', 3', 4', 5', 6'

of the second hexagon. Thus we can make a linear transformation

bringing 1', 2', 3', 4' into coincidence respectively with 1, 2, 3, 4.

Further we may suppose that the half-plane is bounded by the real
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axis and that these points have abscissae «>, 0, 1, x (x>l). Then an

elementary calculation shows that, as a consequence of equality of

cross ratios, 5 and 5', 6 and 6' must coincide. Thus the hexagons are

conformally equivalent. We point out that three is the number of

conformai moduli of a hexagon or a triply-connected domain.

For a pentagon even more is true. There the conditions

M(\, 0) ^ M'(\, 0),       M(0, 1) ^ M'(0, 1)

are sufficient that the second pentagon may be mapped into the first

subject to the assigned boundary conditions. This can be derived

from the considerations of [2, chap. II] or proved directly in the

same manner as above (as was pointed out to me by A. Dvoretzky).
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