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1. We consider the differential equation

(1.1) Ly(t) m y"(t) + p(t)y'(t) + q(t)y(t) = 0 (a ^ t = b),

in which p and q are continuous for a^t — b, with the boundary

conditions

(1.2) y(a) = y(b)=0.

We further suppose that (1.1) and (1.2) are incompatible, that is, if y

satisfies (1.1) and (1.2), then y=0. Let a(t), ß(t) he nontrivial

solutions of (1.1) such that a(a)=0, ß(b)=0, and construct the

Green's function

lß(x)a(t)/W(t) (a = t = x),
(1.3) K(x, t) = <

\a(x)ß(t)/W(t) (x = / = b),

where W=ßa' —aß' is the Wronskian of a and ß.

If / is continuous on [a, b], it is well known that the equation

LF=f with the boundary conditions F(a) =F(b) =0 is solved by

(1.4) F(x) = -  f   K(x, t)f(t)dt.
J a

In the present paper the following question is considered: Under

what conditions can a function F be represented in the form (1.4)?

Before stating our result, we generalize the operator L.

2. Let F(t) be defined in a neighborhood of a point x in (a, b).

There exists a number rç>0 such that any two zeros of any non-

trivial solution of (1.1) differ by more than 2r\ [l, p. 227].x In what

follows, 7} will always have this meaning, and h will always denote a

number in (0, in). Now, if a<x — h<x + h<b, our choice of r¡ assures

us that there is a unique solution y(t) =y(t; F, h) of (1.1) such that

y(x + h) = F(x + h),        y(x - h) = F(x - h).

We put

(2.1) AhF(x) = y(x;F, h) - F(x),
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and define

(2.2) AF(x) = lim 2AhF(x)/h2,
ft->0

provided the limit exists. A*F(x) and A*F(x) are defined similarly,

with lim sup and lim inf in place of lim.

If we choose two solutions u(t) and v(t) of (1.1) such that m(x) = 1,

m'(x) =0, v(x) =0, v'(x) = 1, and express y(t; F, h) in terms of u(t) and

v(t), we obtain

v(x + h)F(x - h) - v(x - h)F(x + h)
(2.3) AhF(x) = '   ---   K ' - F(x).

v(x + k)u(x — h) — v(x — h)u(x + h)

If | F(x±h) — F(x)\ =0(h) as Â—>0, we apply Taylor's theorem to m

and v; (2.3) then becomes

F(x + h) + F(x - h) - 2F(x)
AnF(x) =- ->-

h
(2.4) + — p(x)(F(x + h) - F(x - h))

4

+ -qix)Fix) + oih2),

from which it follows that AF(x)=LF(x) if F"(x) exists. Thus A

generalizes L.

(2.5) Definition. We say that the function fEH in (a, b) if / is

measurable in (a, b), and if

L
b

(x — a)(6 — x) | fix) | dx < so.

3. We now state our main result.

Theorem. Let Fix) be continuous and bounded for a<x<b. Suppose

(i) A*F(x) > — ec, A*F(x) <+ <x> in (a, b), except possibly on count-

able sets Ei and E2 ;

(ii) lim supÄ,0 AhFix)/h^0 on Eu lim inf^o AAF(x)/Â^0 ore E2;

(iii) there exists a function gEH in (a, b) such that g(x) 5¡A*F(x) in

(a, b).

Then

(A) Fia+) and Fib-) exist;

(D) F'(x) is finite for every x in (a, b);

(C) F"(x) is finite for almost all x in (a, 6);

(D) LFEHin (a, Ô);



94 WALTER RUDIN [February

(E) for all x in (a, b),

Fix) = -  f   Kix, t)LFit)dt + y(x),
J a

where y is a solution of (1.1), with the boundary values y(a) =Fia + ),

yib)=Fib-).

This theorem is of a type similar to previous results obtained in

[2] and [3], with (1.1) replacing the Laplace equation and the equa-

tion y" — (l+x2)y = 0 respectively. The present result shows that the

method developed in the two earlier papers has wider applicability.

In particular, we do not require that the Green's function be sym-

metric, or positive.

In [3] the main features of the argument were perhaps somewhat

obscured by the considerable number of asymptotic formulas needed

in dealing with the infinite interval. For this reason we restrict our-

selves to a bounded interval in this paper, and assume that the dif-

ferential equation has no singularities at the end points.

4. To have a convenient symbol for integrals of the type (1.4)

we define, for fEH in (a, b),

(4.1) Uf(x) = -   f   K(x, t)f(t)dt (a ^ x ^ b).
J a

We shall use the following properties of fi:

(4.2) ß/(x) is continuous on [a, b] and differentiable in (a, b).

(4.3) LQf(x) —f(x) for almost all x in (a, b).
(4.4) If a<x — h<x + h<b, and h<r¡, then

/iaH-A AhK(x, t)f(t)dt.
x-h

(4.5) /// M upper semi-continuous at a point x in (a, b), then

A*Q/(«) £/(*).

Continuity of fl/ is evident if we write fl/ in the form

-^-fit)dt-aix)j    -j^rfWt.

Using (4.6) to compute lim^* (fi/(z) —ß/(x))/(z —x) for x in (a, b),

a simple calculation proves (4.2).

Next, let E be the set of points x in (a, b) for which
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d    rx   a(t) a(x)
— —^-f(t)dt = -^-/(x),
dxJa   W(t) W(x)

d   rb  ß(() ßix)
— -^—f(t)dt = - ^^f(x).
dxJ ,   W(t) W(x)

Direct differentiation shows that (4.3) holds on E.

Since K(x, t) satisfies (1.1) as a function of x for fixed /, AnK(x, t)

= 0il\x-t\>h. (4.4) follows.

(4.3) and (4.4) imply (takingf=l),

2   r*+h
(4.7) lim — AhK(x, t)dt = - 1.

Ä->0   h2 J x-h

Also, it follows from (2.3) that, for \t — x\ <h,

(4.8) AhK(x, t) < 0.

To prove (4.5), choose m>f(x). There exists 5>0 such that/(/)

<wfor |i-x| <5. By (4.8),

/'X+h AhK(x, t)dt (0 < h < S),
x-h

which implies, by (4.7), that A*S2/(x) =w. (4.5) follows.

5. Before proceeding to the proof of the main theorem, we define

convexity relative to the operator L.

(5.1) Definition. The continuous function F, defined in (a, b), is

said to be L-convex in (a, b) if AhF(x) §: 0 for every x in (a, b) and

for every h<n such that a<x — h<x+h<b.

(5.2) Lemma. If F is continuous in (a, b) and if A*F(x) = 0 in

(a, b), except possibly on a countable set E on which lim supA_0 AhF(x)/h

^0, then F is L-convex in (a, b).

Proof. We suppose first that A*F(x) >0 on the complement of E.

If F is not L-convex, there exists x0 in (a, b) and k<r¡ such that

AAF(x0)<0. Let y be the solution of (1.1) such that y(x0 — k)

= F(xo-k), y(xo + k) = F(x0 + k). Put s = F-y. Then s(x0-k)

= s(x0+k) =0 and s(x0) >0.

We insert the following remark: for each point x in (a, b) there

exists at most one solution <b(t) of (1.1) such that, for some 5>0,

(5.3) <j>(x) = s(x),       <p(t) ̂  s(t) for \ t - x\ < 8.

For, if 0i and </>2 satisfy (5.3), and <p{ (x)— <p2 (x) =2e>0, then s(t)
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iSmin i<piit), fat)) for |/ — x| <S; and it is not difficult to conclude

(using 2.3) that

lim supAhsix)/h g — e < 0.

But this contradicts our hypothesis, since AAs(x) =AAF(x).

Now, choose a point Xi in (x0 — n, x0 — k). There exists a unique

solution <p of (1.1) such that (1) <¿>(xi)=0, (2) fat)^s(t) for t in

(xo — k, Xo+k), (3) fax2) =s(x2) for some x2 in (x0 — k, x0 + k). Since E

is at most countable we can, by the above remark, further restrict

Xi so that fat)7¿s(t) on E (we merely have to avoid a countable set

in (x0 — T], x0 — k)). Having chosen xi in this way, x2EE, and for small

enough h,

AhF(x2) = Ahs(x2) g Ah<t>(x2) = 0,

which contradicts A*F(x2) >0.

. In the general case (A*F^0), choose a function G such that LG

= 1 (for instance, take G = fi/with/=.l), and put Fn = F+G/n. From

the first part of the proof it follows that Fn is L-convex. Since

F=limn^00 Fn implies AhF = limn~x AhFn, F is L-convex.

(5.4) Corollary. // F is continuous in (a, b), and if A*F(x);í0

gA*F(x) in (a, b), then LF(x) =0 in (a, b).

(5.5) Lemma. // F is L-convex and bounded above in (a, b), then

A*F and A* FEH in (a, b).

Proof. If F(x)<m in (a, b), we subtract a solution y of (1.1)

such that y(a)=y(b)>m. Taking F—y in place of F, we see that

we can assume without loss of generality that F(x) <0 in (a, a + d)

and (b — 5, b) for some 5>0.

Suppose.first that b — a<2r¡. Then F(x)i£0 in (a, b) and K(x, t)

>0 for x, t in (a, b). Consider a sequence j«»| of non-negative upper

semi-continuous bounded functions associated with A*F in (a, b) in

the sense of the Vitali-Carathéodory theorem [4, p. 75], and put

Un(x) = F(x)-üun(x) in (a, b). Then, by (4.5),

A*Un(x) = A*F(x) - A*0m„(x) ^ A*F(x) - un(x) = 0.

Thus Un is L-convex in (a, b). Since ilun(x)—»0 as x—>a and as  •

x—>i (by (4.2)), we have U„(x) ¿0 near the end points, and therefore

Un(x)^0 in (a, b). Hence

F(x) g Om„(x) gO (a < x < b).

Since m„—>A*F p.p. monotonically, we can pass to the limit as re—* oo
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(noting that K(x, t)>0), and obtain

F(x) = QA*F(x) = 0 (a < x <b).

Hence A*FEH in (a, b) if b-a<2rj.

If o — a^2r¡, the above argument shows that A*F is summable in

every interval of length less than 2r\, and completely interior to (a, b).

It follows that A*FEH in (a, 6).

The lemma is completed by noting that 0^A*F(x) ^A*F(x) in

(a, b).

6. Lemma. If fEH in (a, b), then there exists a sequence {un},

n = l, 2,3, • • • , such that

(1) un(x) is upper semi-continuous and less than + <=o in (a, b);

(2) m1(x)^m2(x)= • • • á/(x) in (a, b);

(3) limn<00 w„(x) =f(x) p.p. in (a, b) ;

(4) UnEH in (a, b).

Proof. Let {u*} be a sequence of upper semi-continuous func-

tions associated with (x — a) (b — x)f(x) in the sense of the Vitali-

Carathéodory theorem. The functions un(x) =u*(x)/(x — a)(b — x)

have the desired properties.

7. Now suppose F satisfies the hypotheses of our theorem. Let u

be one of the functions associated with g in the sense of Lemma 6,

and put U(x) = F(x) — Qu(x). On the complement of Ei, (4.5) implies

A*U(x) = A*F(x) - u(x) ^ 0.

Since ßw is differentiate (by (4.2)), (2.4) shows that Antiu(x) =o(h)

for x in (a, b), hence lim supÄ,o AhU(x)/h = 0 on Ei. By (5.2), U(x)

is thus L-convex in (a, b). Since U is bounded in (a, ô), (5.5) and the

obvious inequalities

A*U(x) + A*í2m(x) ̂  A*F(x) ^ A*F(x) á A*U(x) + A*Qu(x)

show that A*F and A* FEH in (a, b).

Let / be a measurable function defined in (a, ô) such that A* F(x)

=f(x)=A*F(x). Let {un} be a sequence associated with / in the

sense of Lemma 6, and put Un(x) = F(x) — Qun(x). Proceeding as

above, we see that Un is L-convex in (a, b). Hence AhF(x) —AhQu„(x)

for x in (a, b), n = 1, 2, 3, • • • , h in (0, r¡). Since z<„—>/ p.p. monoton-

ically, we can pass to the limit (taking into account (4.4) and (4.8)),

and obtain

(7.1) AhF(x) â Ahüf(x).

Approximating/ similarly by a monotonically decreasing sequence of
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lower semi-continuous functions, we obtain (7.1) with the inequality

reversed. Hence

(7.2) A*F(x) = AhQf(x).

By (5.4), the function y(x) = F(x) — ß/(x) is thus a solution of (1.1).

By (4.3), LF(x) =f(x) p.p. in (a, b). This gives us the representation

(E) in the conclusion of the theorem.

By (4.2) and (4.3) the other parts of the conclusion are immediate

consequences of the representation formula. This completes the proof.
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