
ROTATIONS IN THE PRODUCT OF TWO WIENER SPACES1

JACOB E. BEARMAN

1. Introduction and statement of results. N. Wiener [l]2 has de-

fined an integral some of whose properties and applications have

been investigated by R. H. Cameron and W. T. Martin [2, 3, 4].

The integral is defined over the space C, the space of all real-valued

functions x(t) which are continuous on Q^t — l and which satisfy

the initial condition x(0)=0. The measure of the whole space is

unity, and the measure has the properties of ordinary Lebesgue meas-

ure. The symbol ff F(x)dwx is used to denote the Wiener integral of

a functional F(x) over a Wiener measurable subset 5 of C.

The present paper considers functionals of two variables, F(x; y),

where x(t)EC and y(t)EC, with the usual definition of the integral

of F over C®C; and the behavior of this double Wiener integral is

investigated when the variables are subjected to the transformation

(1.1)

X(t) =   Í cos 6(s)dx(s) -  I    sin 0(s)dy(s),
Jo Jo

Y(t) =   f sin 6(s)dx(s) +  f   cosd(s)dy(s),
Jo Jo

where 6(t) is of bounded variation on 0^t = l. This takes C®C into

C®C in a 1-1 manner, and reduces for constant 6 to

X(t) = x(t) cos 0 - y(t) sin 0,

Y(t) = x(t) sin 0 + y(t) cos 0,

which for each iisa rotation in ordinary Euclidean space. The trans-

formations (1.1) and (1.2) shall be called "rotations" in C®C.

The significance of the results obtained here can be appreciated

only against the background of [2, 3] and, in particular, [4]. In view

of the results obtained in those papers, it may come as a distinct

surprise to find the Wiener integral behaving as intuition would sug-

gest that an integral should behave; the results of the present paper

show that under a "rotation" the Wiener integral over C®C of any

Wiener summable functional F(x; y) is invariant, i.e., that trans-
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formations of the type indicated preserve measure as well as measur-

ability.
The final results may be stated in the following theorem.

Theorem. Let F(X; Y) be any Wiener summable functional of X(t)

and Y(t) on C®C; and let 6(t) be a function of bounded variation on

0^/^l. Then the transformation (1.1) is measure preserving and

f     f  F[X;Y]dwXdwY
J c   J c

(1.3) =1      I     F     I      cos 0(t)dx(t) -  I      sin 0(t)dy(t) ;
Jc   Jc      \-Jo Jo

I      sin 6(t)dx(t) +   I      cos 0(t)dy(t)   dwxdwy.

The chain of reasoning leading to this final result is in two parts,

the second partly retracing the first. Part I, the angle of rotation a

constant, is given in §§2 and 3; and Part II, the angle of rotation a

function of t, is given in §§4, 5, 6. An application of the theorem is

given in §7.

2. The angle of rotation constant. Functionals restricted. Let F(x; y)

be a Wiener summable functional depending on the values of x(t)

and y(t) at only re values of t:

F[x; y] = f[x(ti), x(t2), ■■■ , x(tn); y(h), y(t2), ■■■ , y(Q],

where x(t)EC and y(t)EC, 0<ti<t2< ■ • • <¿n = l, and where

f(ui, u2, • • • , un; vi, v2, • • • , d„)==/(m; v) is a Lebesgue measurable

function of its 2re arguments. Let the product set S = Si<S>S2, where

., 4.        Si:    - eo á !/<*(*,•)< i»/á + », ,
(2.1) 7 = 1, 2, • • • , re,

S2:    - oo ^Kj<y(t,) <X,g + »,

have Wiener measure given by the formula mw(S) =mw(Si)mw(S2),

so that

/»In /» 11        /•*„ fM

mw(S) = —-—- • • I
Tnti(t2 -  h)  ■  ■  ■   (tn  -   tn-l) J U J fl      J „„ Jäi

[-¿L      i=i

A (Ui-Ui-iY+Wi-Vi-i)2-]
exp |   -2-,-dVi ■ ■ ■ dVndUi ■ ■ ■ dUn,

ti — ti-i J

and
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rw rw i
F[X;Y]dwXdwY =-

Jc     Jc TTnh(t2  —   ti)   ■  ■   ■   (tn  -   tn-l)

(2.2) . f W rw,vu>e\-±iU'-U'-')'+{V'-V'-u']
J-X, J -00 L »-1 ti — ti-1 J

■dVi- ■ ■ dVndUi- ■ ■ dUn,

where U0= Vo = to = 0.

On account of an elementary property of the Wiener measure of

an interval (namely, that an extra t¡ can be introduced at any point

other than the given points ti, /2, • • • , tn if the corresponding values

£,= — oo, r)j = + oo are assigned with it; i.e., the measure is a true

set function independent of the manner in which the set is de-

scribed), there is no loss in generality in using the same sequence of

values of / for both X and Y in the above formulas.

Now let the transformation (1.2) hold (i.e., let 6(t) be constant),

and correspondingly let

Ui = Ui cos 6 — Vi sin 0,
i = 1,2, ■ • • , n.

Vi = Ui sin 0 + Vi cos 0,

By considering the exponent in the exponential, and the fact that

the Jacobian of the transformation is unity, we see that

(" ••'••• f'm: V)
J —OH J — 00

r     », (Ui - c/f_i)2 + (Vi - Vi-i)2!
•exp   - E- \dVi--- dVndUi ■ ■ ■ dUn

L    <_i ti — ti-i A

r°° <2«> fM, .
=   1       • • •   I    f(u cos 0 — v sin 0; u sin 0 + v cos 0)

J — 00 J -00

r    «  (m - Mi_i)2 + (vi - Vi-i)2-]
■ exp   — ¿_i -\dvi- • • dVndui ■ ■ ■ dun.

L    i=i ti — ti—i J

Hence

,w   /%W

f     f   F[X;Y]dwXdwY
J c   J c

=   I      j    F[x cos 0 — y sin 0; x sin 0 + y cos 6]dwXdwY,
J c   J c

c   J c
(2.3)

->W     nW

which is formula (1.3) for the case 5 = const.
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Thus formula (1.3) which is to be established has now been proved

to hold when 6 = const, and the functional depends on the values of x

and y at only a finite number of values of t.

In particular, if Q is an interval in C® C, and ^[A"; Y] is the char-

acteristic functional of Q, it is clear that Ïq[X; Y] depends only on

the values of X and F corresponding to a finite number of values of t.

Thus the transformation formula (2.3) holds for

F[X;Y]=X0[X;Y].

Hence rotation through a constant angle takes intervals into measur-

able sets and leaves their measures invariant.

3. Angle of rotation constant. Functionals unrestricted. Since the

Wiener measure is a completely additive set function, the results

stated in §2 for intervals extend directly to countable unions of

intervals, and also to countable intersections of countable unions of

intervals, etc. Thus, we note that for all Borel sets based on intervals

in C®C, the rotation (1.2) maps Borel sets into measurable sets

which have the same measure as the original Borel sets.

Now, since (1.2) is measure preserving for Borel sets, in particular

it takes null Borel sets into null sets. Thus (1.2) takes all null sets

into null sets; and finally it takes measurable sets into measurable

sets while leaving the measure invariant.

Since (2.3) holds for the characteristic functionals of measurable

sets, it holds for simple functionals; i.e., measurable functionals taking

on a finite number of different values. By monotone convergence,

the result extends directly to non-negative summable functionals,

and finally to unrestricted summable functionals.

4. Angle of rotation a step-function. Functionals restricted. In this

section let d=d(t) be a step function which is left-continuous, and

let F(X; Y) be restricted as in §2. In the following discussion, take

h, h, ■ • ■ , tn to be any sequence of values of t satisfying 0</i<¿2

< • • • <í»=T which include all the values of t on which x(t) and

y(t) depend and all values of t where 6(t) has a finite discontinuity

(this involves no essential change in the notation since any finite

number of t¡ can be added at will—see the second paragraph of §2).

Let Aui = Ui—«i_i (the use of the symbol A should not be taken to

imply that Are¿ is an increment and hence w,-_i and w< are different

values of the same variable; they may be independent variables), let

A sin 0(tj)= sin Q(t¡) — sin 0(t¡-i), with similar definitions for other

variables, and let /0 = Wo = »o = 0. For each t = l, 2, •••,», let
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Ui = Ui cos Q(ti) — ViSinß(ti)

i

+ E [flj'-iA sin 6(ti) — m,_iA cos 6(t,) ]
J~2

= E iAui cos 0(tj) - AVi sin 6(tj)]
j-i

and

Vi = Ui sin d(ti) + Vi cos 6(ti)

i

— E [wj-iA sin d(ti) + î>,_iA cos 6(tj)]
J=2

i

= E [^mj sm 0(h) + A»,- eos 0(¿,)].
j=i

An elementary calculation shows that the Jacobian of the trans-

formation is unity; furthermore

A (Ui- Ui-i)2+(Vi-Vi-i)2 __   »   (in - «¿-i)2 + (vi - Vi-1)2

t-i ti — ti—i j_i ti — /»_i

and direct calculation (using (2.2) on each side) shows that

I    F[X; Y]dwXdwY
J c   J c

=   f     f  f\ ■ • ■ , È {[*(*,) - <h-i)] cos 6(ti)
(4 1) C     C    L

- [y(h) - y(Í3-i)]sin0(¿y)},. • • ;

i

••• .E {[*(*/)- x(h-ù] sin 6(ti)
i-i

+ [y(h) - y(h-i) ] cos 6(tj)}, ■ ■ •    dwxdwy-

For tj^i<t^tj, we have 0(t)=6(tj) since 0(i) is a left-continuous

step-function having no discontinuities except possibly at h, t2, • • • ,

tn. Now

i

E {[*(*<-) - *(*f-0] cos 0(t¡) - [y(ti) - y(ti-i)] sin 6(tj)}
3-1

cos 6(t)dx(t) -   I      sin 6(t)dy(t),
0 Jo
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and the same equation holds with cos replaced by sin and sin by

— cos. Thus (1.3) is valid for F(X; Y) which depends only on the

values of X and Y at a finite number of values of t and for 6(t) a

left-continuous step-function.

5. Angle of rotation variable. Functional restricted. Let 6(t) be a

left-continuous function of bounded variation, and let F(X; Y)

be restricted as in §2. Further, since a limiting argument must be

used to generalize 6 from a step-function to a function of bounded

variation, we require that the function /, in terms of which F(X; Y)

is defined, be bounded and continuous in all its arguments over its

whole range of definition.

Let {t*}, i= 1, 2, • • • , v, be a set of values of / such that F(X; Y)

depends only on X(t*) and Y(t*), i =1,2, • • ■ , v. Form a partition of

[0, l] into m equal parts; let the number of distinct values of t in

{t*} and the above partition be re. Let these distinct values be

{tj}, j= L 2, • • • , re. Let re¿ be the subscript of t* in the new nota-

tion, i.e., tj = t* if j = w,-. Certainly m — n — m+v. Form the step-

function 8n(t) =0(tj) on tj-.i<t^t,: For fixed v, it is clear that re and

all tj and all re,- depend on m, while 6nit) also really depends on m.

Note in particular that reí—> <=° and re—> oo are equivalent, so that the

use of the latter rather than the former causes no ambiguity; and the

dependence of the step-function, etc., on m will not be indicated, in

the interest of avoiding additional notational difficulties. By the

results of §4 we have

I      I    F[X; Y]dwXdwY =   j      I    F     I      cos On(t)dx(t)
J c   J c J c   J C      \-J 0

/»(•) /•<■>
(5.1) -  I      sin0„(/)ay(/);     I      sin 0n(t)dx(t)

Jo Jo

+  I      cos 0n(t)dy(t)   dwxdwy.

Consider any one of the four Stieltjes integrals in (5.1), the results

of all four integrals going through similarly; e.g., consider

•> 0

cos 0n(s)dx(s) = 2^j cos B(t,)[x(t,) — x(tj-i)].

Now the integrals /„ cos 6(s)dx(s), etc., exist for 0=t = l since 6(s)

and hence cos 0(s) and sin 6(s) are of bounded variation on [0, t]

and x(s) is continuous on this interval. Hence in particular they exist
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if t = t*, i=\,  2, - • • , v.  Thus by the definition of  a  Riemann-

Stieltjes integral,

/.
cos 0(s)dx(s) = lim  E cos 6(t/) [x(tj) — x(/,_i)]

•>-*»     3=1

(5.2)

= lim   I     cos 8n(s)dx(s),     i = 1, 2, • • • , v;
B—»w    J 0

and the same is true when cos is replaced by sin or x by y or both.

Let X and Y he defined in terms of x and y by (1.1), and similarly

let

(5.3)

Xn(t) =   I    cos On(s)dx(s) —  j    sin 6n(s)dy(s),
Jo Jo

Yn(t) =   I    sin dn(s)dx(s) + J    cos 6n(s)dy(s).

Then by (5.2), etc., we have for i=l, 2, • ■ ■ , v,

lim Xn(k) = X(U)    and     lim Yn(U) = Y(t*).
n—>oo n—*<x>

But by the assumptions of this section, F(X; Y) depends only on

the values of X and Y at t = t* (i= 1, 2, • • • , v), and it is a continu-

ous function of those values. Hence

(5.4) limF(Xn; Yn) =F(X;Y).
n—»oo

Then, since by the assumptions of this section F is bounded, it fol-

lows from (5.1), (5.3), (5.4), (1.1), and the principle of bounded

convergence that (1.3) holds. We have now established (1.3) under

the assumptions that 6(t) is a left-continuous function of bounded

variation and F(X ; Y)=f[x(t*i), ■ ■ -, x(t*); y(%), ■ • ■ , y(/*)],

where/is bounded and continuous.

6. The general case. We now remove the assumptions of the last

section. We note first that any function of bounded variation can be

made left-continuous by changing its values at its countable set of

discontinuities and that these changes leave f0' cos 6(s)dx(s), etc.,

invariant for all values of t on [0, l]. Hence if (1.3) holds when 6(t)

is normalized to be left-continuous, it holds for the original d(t);

and the assumption that d(t) be left-continuous can therefore be

dropped.
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Next we note that (1.3) holds if F[X; Y] is the characteristic

functional of an interval and dit) is any function of bounded varia-

tion. In this case all the assumptions of the last section are satisfied

except for the requirement that the function / on which F depends

be continuous. But / is now the characteristic function of an interval

in 2v dimensions, and can be approximated arbitrarily closely in the

pointwise sense by 2v-dimensional continuous trapezoidal functions

which are uniformly bounded. Since (1.3) holds for F defined in

terms of these functions, it holds for the original F by bounded

convergence. This brings us to the same point in the argument as

was reached (for constant 6) at the end of §2; and from this point

on the argument proceeds to the general result in a manner strictly

analogous to that of §3. Thus the theorem is proved. We note in

particular that when 0(i) is of bounded variation, (1.1) leaves measur-

ability and measure invariant.

7. An application. Aside from the theoretical importance of the re-

sults presented here and their use in extending the general theory of

the Wiener integral [S], the formulae given here have the immediate

utility of allowing the evaluation of Wiener integrals previously un-

known. As an illustration, let us consider the integral

A =  I       I    exp   2X2 I    xit)yit)dt \dwxdwy.

Applying to A the transformation formula (2.3), with 0 = x/4, we

obtain

A = B m  f     f   exp ix2 f   [x2it) - y2it)]dt\ dwxdwy.

The summability of the integrand of B and hence of A can be seen

for appropriate values of X by applying the Fubini theorem to B

and evaluating the resulting single Wiener integrals by equation

(13.12) of [3]; thus when -ir/2<\<ir/2,

B =  j    exp   X2 f   x\t)dt \dwx-  f   exp    -X2 f   y\t) \dwy

= [sec X sech X]1/2,

and the summability of the two factor integrals establishes the

summability of B.

Now suppose we reduce A to a single Wiener integral by the earlier

theory. Let ait) =flyis)ds and we have by Fubini's theorem and
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equation (7.5) of [2],

A =  )     <   f   exp    2X2 f   x(t)da(t)   dwx\ dwy

= J    jexplVj   «*(fl«ftll <*Vy

= J    exp   X4 J     ¡j    y(s)dsi dt    dwy.

Setting this equal to B, we obtain the new formula

(7.1)      I    exp   A4 I     <  I    y(s)ds> dt   dwy = [sec X sech x] 1/2

This formula has been shown to be valid for —ir/2<\<w/2, but

its validity could be extended by the theory of analytic continuation

to all complex values for which the integral converges; i.e., for all X

such that Re (X4) <tt4/16.
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