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1. Let L be a real linear topological space. If A and B are convex

sets and X is a real number, the sets A +B and X^4 are defined and

convex. Here A+B={z\z=x+y, xEA, yEB], X^4 = {z|z=Xx,

x£^4 }. These operations satisfy

(A + B) + C = A + (B + C),       A + B = B + A,

*(A + B) = \A + XB,       Xi(M) = (\{k2)A,       ÍA = A,

so that the set of all convex sets of L is a commutative semigroup

under addition. If the situation had been such that it was not only

a semigroup but also a group, and if furthermore the second distribu-

tive law for multiplication with scalars had been true, then the set

of convex sets would have been a vector space. The second distribu-

tive law: (Xi+X2)^4=Xi^4-|-X2i4 is, however, true if Xi and X2 have

the same sign, in particular if both are positive. It is therefore natural

to ask whether the additive semigroup can be embedded in a group

and whether multiplication with scalars can be extended to this

group in such a way that the resulting system becomes a vector

space, and so that for positive scalars the new multiplication coincides

with the original one on the semigroup.

The object of this paper is to prove such an embedding theorem for

the case in which L is a normed linear space. We shall, however, not

embed the class of all convex sets but only certain subclasses such as

the class of all compact convex sets. Further we shall make the ob-

tained vector space into a normed linear space by extending the

Hausdorff distance [3, p. 146]1 between two convex sets. This is all

done by using the well known classical method of extending commuta-

tive semigroups, which is used for example when defining negative

numbers. The use of this method is made possible by the fact that the

law of cancellation holds in our semigroup.

2. The following theorem contains all information we need acquire

by use of the extension method.

Theorem 1. A. Let M be a commutative semigroup in which the law

of cancellation holds. That is: For A, B, CE M we have 1. (A+B) + C
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=A + (B + C),2. A+B = B+A, 3. A + C = B + Cimplies A=B. Then
M can be embedded in a group N. Furthermore N can be chosen so as to

be minimal in the following sense: If G is any group in which M is

embedded, then N is isomorphic to a subgroup of G containing M.

B. If a multiplication by non-negative real scalars satisfying:

4. \(A+B)=\A+\B, 5. (\i+\2)A=\iA+\2A, 6. Xi(Xv4)=XiX^,
7. IA=A is defined on M, then a multiplication by real scalars can be

defined on N so as to make N a vector space and so that for X = 0 a«a*

A EM the product \A coincides with the one given on M.

C. If further a metric d(A, B) is given on M and satisfying: 8.

d(A + C, B + C)=d(A,B),9. d(\A, \B) =\d(A, B), 10. A+BandXA
are continuous operations in the topology defined by d, then a metric

can be defined on N so as to make N a normed linear space and so that if

A, BEM, the distance between A and B equals d(A, B).

Proof. Once N is defined, the necessary verifications of the axioms

for groups, vector spaces, and normed spaces are entirely trivial and

will not be carried through in detail.

The set N shall consist of certain equivalence classes of pairs,

(A, B), oí elements of M. The equivalence relation, denoted by "~,"

is defined by: (A, B)~(C, D) if and only if A+D=B + C. The
equivalence class containing the pair (A, B) shall be denoted by

[.¡4, B]. In order to embed If in A7' we identify any element A oí M

with the class [A+B, B].

Addition in N is defined by [A, B}+ [C, D]= [A + C, B+D]. If X
is a non-negative scalar, we define \[A, B] = [\A, X3j. If X is nega-

tive, we define X[^4, B]= [|X|.B, |X|j4]. The metric 5 on N is de-

fined by 5([A, B], [C, D])=d(A+D, B + C).
After having made these definitions we should verify that they

really determine the corresponding functions uniquely. As an ex-

ample we choose the metric. Suppose that [.4, F]=[.4i, Bi] and

[C, D] = [Ci, Di]. Thusô = S([^,5], [C, D])=d(A+D, B + C). Be-
cause of 8, we may add A1+B1+C1+D1 and get b = d((A+Bi)

+ (Ci+D)+Ai+Di, (Ai+B) + (C+Di)+Bi+Ci). Since A+Bi = Ai
+B and C+Di = Ci+D, we obtain b = d(Ai+Du Bi+Ci) = b([Ah B,],

[Ci, Di]).
A detailed discussion of part A of the theorem may be found in

Graves [2, p. 24]. The verifications necessary for part B are easy

although somewhat lengthy. As an example we choose to prove the

second distributive law. The proof requires discussion of a number of

cases. As the argument is essentially the same in the different cases,

we do only one typical case. Suppose Xi>0, X2<0, Xi+X2<0.

Thus   (Xi+X2)U,   B] = [(-\i-\2)B,    (-•Ki-\i)A]=[(-\i-\2)B
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+\i(A+B), (-^i-\2)A+MÄ+B)] = [-\2B+\iA, -\2A+\iB]
= [-X25, -X2^]+ [Xi^, Xi-B] =X2[^, B]+\i[A, B]. This proves the

second distributive law.

Concerning part C we have to verify that S is a metric on N, that

it is homogeneous and invariant under translations in N, and that it

makes addition and multiplication continuous. Let x=[^4, B]EN

and y= [C, D]EN. Suppose 5(x, y)=0. Thus d(A+D, B + C)=0 or
A+D = B + C which means (A, B)~(C, D) or x=y. Conversely

x=y implies 5(x, y)=0. The law S(x, y)=o(y, x) is immediate.

To prove the triangular inequality, put z= [£, F]. Thus

o(x, z)=d(A + F, B+E)=d((A+D) + (C+F), (B + Q + (D+E))
^d((A+D) + (C+F), (B+C) + (C+F))+d((B+C) + (C+F), (B+Q
+ (D+E))=d(A+D, B + C)+d(C+F, D+E)=5(x, y)+5(y, z).
The rest of the verification is easily done.

At last we notice that 5(x, y), because of the invariance under

translations, is really a function of only one variable, namely x —y

(=x+(—l)y), so that we can put ¿(x, y) =||x—y||. The function ||x||

satisfies the axioms for a norm, which proves part C.

3. We now proceed to prove that the law of cancellation holds for

certain classes of convex sets.

Lemma 1. Let A, B, and X be given sets in a real normed linear space'

Suppose B closed and convex, X bounded, and that A+XEB+X-

ThenAEB.

Proof. Let a be any element of A. We shall show that it has to be

an element of B. We know that given any Xi£A we have a+Xi

EB+X, that is, there exist biEB and x2£A with a+Xi = bi+x2.

For the same reason b2EB and X3£A with a+x2=b2+x3 must exist.

Repeat the procedure indefinitely and sum the first n of the equations

obtained. We get: na+ 2~2"-i *<=]L"-i 0¿+ 2~2t-i x¿ or na+Xi

= 2~L"-ibi+Xn+iora = (l/n) Y/i-ibi+xn+i/n-Xi/n. Put(l/re) ^C_i¿><
= c„. Thus a = Cn+xn+i/n — Xi/n. We observe that cnEB for all n be-

cause of the convexity of B, that xi/ra tends to the origin and that

Xn+i/n tends to the origin because of the boundedness of X. There-

fore c„ converges to a. But, B being closed, this implies that a£5.

Lemma 2. If A and B are closed, convex sets in a real normed linear

space and X is bounded, then A+X—B+X implies A =B.

4. The next lemma deals with the invariance of Hausdorff distance.

Lemma 3. Let A and B be convex sets in a real normed linear space.

Suppose also that A +\S and B +\S are closed for all X è 0, where S is
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the unit sphere. Let X be any bounded set. Then d(A, B)=d(A+X,

B+X).

Proof. Let 5 denote the unit sphere of the space. Consider the fol-

lowing four inequalities

(1)   A + XSDB, (2)   B + \SDA,

(3)    A + X + XS D B + X, and     (4)    B + X + XS 3 A + X.

Put di=d(A, B) and d2 = d(A+X, B+X). Then ¿i equals the in-
fimum of the positive numbers X for which (1) and (2) hold. Similarly

for d2 and (3) and (4). Since (3) and (4) follow from (1) and (2) re-

spectively by adding X, we have ¿i = d2. Conversely since, by Lemma

1, cancelling X is allowed in (3) and (4), we obtain di — d^, which

proves Lemma 3.

5. Combining the results obtained, we easily prove the following

embedding theorem.

Theorem 2. Let Lbea real normed linear space and M any space the

points of which are closed, bounded convex sets in L, and which has the

following properties:

1. M is closed under addition and multiplication by non-negative

scalars.

2. If A EM and S is the unit sphere of L, then A +S is closed.
3. M is metrized by the Hausdorff metric.

Then M can be embedded as a convex cone in a real normed linear space

N in such a way that

a. the embedding is isometric,

b. addition in N induces addition in M,

c. multiplication by non-negative scalars in N induces the cor-

responding operation in M.

Furthermore, N can be chosen so as to be minimal in the following sense:

If H is any real normed linear space in which M is embedded in the

above fashion, then H contains a subspace containing M and isomorphic

toN.
The following three examples satisfy the conditions put on M.

a. The set of all finite-dimensional compact convex sets.

ß. The set of all compact convex sets.

y. The set of all closed, bounded and regularly convex sets, provided L

is an adjoint space. If L is a reflexive space the set of all closed, bounded,

convex sets will therefore satisfy the assumptions.

Proof. Using Theorem 1 we have to verify the conditions 1-10,

all of which except 3 and 8 are well known facts from the theory of
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convex sets. Condition 3 is supplied by Lemma 2 and 8 by Lemma 3.

In order to see that the sets a, ß, and y can be used for M we have

to verify that .4 £ Jlf implies .4 -(- S closed which is easy for M=a and

ß. For the case M=y see Krein and Smulian [5].

6. The idea of embedding spaces of convex sets in linear spaces

seems to go back to Brunn [l ]. For an interesting application of this

idea and further references see Inzinger [4].

I am indebted to the referee for pointing out the applicability of

Theorem 2 to the set y and for some other valuable remarks.
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