LINEAR TRANSFORMATIONS ON OR ONTO A BANACH SPACE

H. D. BLOCK

We investigate here a simple property of linear transformations which are not necessarily bounded or closed or one-to-one, but whose domain or range is all of a Banach space.

THEOREM 1. Let T be a linear transformation from (all of) a Banach space \mathfrak{X} onto a normed vector space Y. Then there is a number m>0 such that for any $x\in\mathfrak{X}$ there exists a sequence $x_n\to x$ such that $||Tx_n|| \leq m||x||$ and $|Tx_n|$ converges in the sense of Cauchy.

PROOF. Let C_n be the set of all $x \in \mathfrak{X}$ such that $||Tx|| \leq n$ $(n=1, 2, 3, \cdots)$. Then $\mathfrak{X} = \sum_{n=1}^{\infty} C_n$. In virtue of the Baire category principle there is an integer k such that \overline{C}_k contains a closed sphere, S, whose center and radius we denote by x_0 and r, respectively. Let $||Tx_0|| = b$. Thus for each z such that $||z-x_0|| \leq r$ there exists a sequence $z_n \to z$ with $||Tz_n|| \leq k$. Take m = 2(k+b)/r.

Now let $x \in \mathfrak{X}$ be given. It suffices to consider $x \neq 0$, for if x = 0, the theorem is obvious if we use the sequence $x_n = 0$. Let $z = x_0 + rx/||x||$. Then $z_n \to z$ with $||Tz_n|| \leq k$. Let $x_n' = (||x||/r)(z_n - x_0)$. Then $x_n' \to x$ and $||Tx_n'|| \leq ((k+b)/r)||x|| = (m/2)||x||$. Now we shall construct a sequence $\{x_n\}$ such that $\{Tx_n\}$ is, in addition, Cauchy convergent. For this we use the following lemma.

LEMMA. For a given $x \in \mathfrak{X}$, $x' \in \mathfrak{X}$, there exists a sequence $u_n \to x$ with $||Tx' - Tu_n|| \le (m/2)||x - x'||$.

PROOF. Applying the result already proved to the element x-x' we have $x_n'' \to x-x'$ with $||Tx_n''|| \le (m/2)||x-x'||$. Let $u_n = x' + x_n''$. Then $u_n \to x$ and $||Tu_n - Tx'|| = ||Tx_n''|| \le (m/2)||x-x'||$, as asserted.

To complete the proof of the theorem take n_1 large enough so that $||x-x_{n_1}'|| \le ||x||/2$ and $||Tx_{n_1}'|| \le (m/2)||x||$. Let $x_1=x_{n_1}'$. By the lemma, $u_n^{(1)} \to x$ with $||Tx_1-Tu_n^{(1)}|| \le (m/4)||x||$. Let n_2 be large enough so that $||u_{n_2}^{(1)}-x|| \le ||x||/2^2$ and take $x_2=u_{n_2}^{(1)}$. Again by the lemma, there exists $u_n^{(2)} \to x$ with $||Tx_2-Tu_n^{(2)}|| \le m||x||/2^3$. Take n_3 large enough so that $||u_{n_3}^{(2)}-x|| \le (m/2^3)||x||$ and let $x_3=u_{n_3}^{(2)}$. Continuing in this manner we have

$$||Tx_1|| \leq \frac{m}{2}||x||,$$

Received by the editors May 10, 1951.

Thus $x_n \to x$ and for $p > q \ge 1$: $||Tx_p - Tx_q|| = ||Tx_p - Tx_{p-1} + Tx_{p-1} - \cdots + Tx_{q+1} - Tx_q|| \le m||x|| (1/2^{q+1} + \cdots + 1/2^p) \le m||x||/2^q$, which proves that the $\{Tx_n\}$ converges in the sense of Cauchy. Finally

$$||Tx_n|| = ||Tx_n - Tx_{n-1} + Tx_{n-1} - \dots - Tx_1 + Tx_1||$$

$$\leq ||Tx_n - Tx_{n-1}|| + \dots + ||Tx_2 - Tx_1|| + ||Tx_1||$$

$$\leq m||x|| \left(\frac{1}{2^n} + \dots + \frac{1}{2^2}\right) + \frac{m}{2}||x|| \leq m||x||.$$

It might be remarked that the closed graph theorem is an immediate corollary of this theorem (that is, if T is everywhere defined on a Banach space, then it is closed if and only if it is bounded). A further corollary is the fact that if T is everywhere defined and not closed, then for each $x \in \mathcal{X}$ there exist three sequences $x_n^{(1)} \to x$, $x_n^{(2)} \to x$ with $Tx_n^{(1)} \to \infty$, $Tx_n^{(2)} \to Tx$, $Tx_n^{(3)} \to y$ with $||y|| \le m||x||$, where m is independent of x.

THEOREM 2. Let T be a linear transformation from a normed vector space X onto (all of) a Banach space Y. Then there exists a number m>0 such that for any $y \in Y$, there exists a sequence $y_n \rightarrow y$ with $y_n = Tx_n$, $||x_n|| \le m||y||$, and $\{x_n\}$ convergent in the sense of Cauchy.

PROOF. The method is entirely analogous to that of Theorem 1 but we give the details. Let C_n be the set of all $y \in Y$ such that y = Tx with $||x|| \le n$ $(n = 1, 2, 3, \cdots)$. Then $Y = \sum_{n=1}^{\infty} C_n$. Hence there exists an integer k such that $\overline{C_k}$ contains a sphere whose center and radius we denote by y_0 and r respectively. Say $y_0 = Tx_0$, with $||x_0|| = b$. Let m = 2(b+k)/r. For any $z \in Y$ such that $||z-y_0|| \le r$ there exists $z_n \to z$ with $z_n = T\xi_n$ and $||\xi_n|| \le k$. Let $y \in Y$ be given. Clearly it suffices to consider $y \ne 0$. Let $z = y_0 + (r/||y||)y$. Then the z_n described above exists. Let $y_n' = (||y||/r)(z_n - y_0)$. Then $y_n' \to y$, $y_n' = Tx_n'$ (where $x_n' = (||y||/r)(\xi_n - x_0)$), and $||x_n'|| \le ((k+b)/r)||y|| = (m/2)||y||$.

Now we shall construct a sequence $\{y_n\}$ such that $\{y_n\}$ is, in

addition, Cauchy convergent. Again we use a lemma.

LEMMA. For a given $y \in Y$, $y' = Tx' \in Y$ there exists a sequence $v_n \rightarrow y$ with $v_n = Tu_n$ and $||u_n - x'|| \le (m/2)||y - y'||$.

PROOF. Applying the result already established to the element y-y', we have $y_n'' \to y - y'$, $y_n'' = Tx_n''$, $||x_n''|| \le (m/2)||y-y'||$. Set $v_n = y' + y_n''$. Then $v_n \to y$, $v_n = Tu_n$ (with $u_n = x' + x_n''$), and $||u_n - x'|| = ||x_n''|| \le (m/2)||y-y'||$, as asserted. To complete the proof of the theorem select n_1 large enough so that $||y_{n_1} - y|| \le ||y||/2$. Let $y_{n_1}' = y_1$, $x_{n_1}' = x_1$. Then $y_1 = Tx_1$, $||x_1|| \le (m/2)||y||$. Take n_2 large enough (by the lemma) so that $||v_{n_2} - y|| \le ||y||/4$, $v_{n_2} = Tu_{n_2}$, and $||u_{n_2} - x_1|| \le (m/2)||y - y_1|| \le (m/4)||y||$. Let $v_{n_2} = y_2$, $u_{n_2} = x_2$. Take n_3 large enough so that $||v_{n_3} - y|| \le ||y||/2^3$, $v_{n_3} = Tu_{n_3}$, $||u_{n_3} - x_2|| \le (m/2)||y - y_2|| \le (m/2^3)||y||$. Let $v_{n_3} = y_3$, $u_{n_4} = x_3$. Continuing in this manner we find a sequence $y_n = Tx_n$, $||y_n - y|| \le ||y||/2^n$, $||x_n - x_{n-1}|| \le (m/2^n)||y||$. Thus $y_n \to y$. For $p > q \ge 1$,

$$||x_{p} - x_{q}|| = ||x_{p} - x_{p-1} + x_{p-1} - \dots + x_{q+1} - x_{q}||$$

$$\leq m||y|| \left(\frac{1}{2^{p}} + \dots + \frac{1}{2^{q+1}}\right) \leq \frac{m||y||}{2^{q}}$$

so that $\{x_n\}$ converges in the sense of Cauchy. Finally

$$||x_n|| = ||x_n - x_{n-1} + x_{n-1} - \dots + x_2 - x_1 + x_1||$$

$$\leq m||y|| \left(\frac{1}{2^n} + \dots + \frac{1}{2^2} + \frac{1}{2}\right) \leq m||y||.$$

IOWA STATE COLLEGE