COMPARISON OF TOPOLOGIES ON FUNCTION SPACES

JAMES R. JACKSON

1. Introduction. Let X be a topological space, Y be a metrizable space, and C be the collection of continuous functions on X into Y. We shall be interested in two topologies on C.

The compact-open or k-topology. Given compact subset K of X and open subset W of Y, denote by (K, W) the collection of functions $f \in C$ such that $f(K) \subset W$. The assembly of finite intersections of sets (K, W) forms a base for a topology on C, called the compact-open topology, or k-topology [1]. Here the restriction to metrizable spaces Y is unnecessary.

The topology of uniform convergence or d^* -topology. If Y is metrizable, let d be a bounded metric consistent with the topology of Y. For instance, if d' is an unbounded metric, let

$$d(y_1, y_2) = \min \{d'(y_1, y_2); 1\}, y_1, y_2 \in Y.$$

Then for any two elements f and g of C, define

$$d^*(f, g) = \sup d(f(x), g(x)) \qquad \text{over } X.$$

It is easily verified that d^* is a metric function, and hence determines a topology on C. This topology is called the topology of uniform convergence with respect to d, or d^* -topology [3].

Arens [1] and Fox [2] have shown that the k-topology has certain properties which particularly adapt it to the study of various topological problems, particularly those concerned with homotopy theory. But in case Y is metrizable, so that the d^* -topology can be defined, it is obviously easier to deal with than the k-topology. Hence it is of interest to inquire when the two topologies are equivalent.

It is easily shown that if Y is metrizable and X is compact, then the d^* -topology on C is equivalent to the k-topology (see, for instance, [3]). On the other hand, a theorem of Fox [2] implies that if X is a separable metric space which is not locally compact and Y is the real line, then the two topologies are inequivalent. Hu [3] gives an example due to Liang Ma wherein X is a countable discrete space, and the two topologies are inequivalent. We shall answer in a fairly general way the question of the relationship between these topologies.

Let Y be metrizable. We shall show in §2, without further restric-

Received by the editors February 12, 1951.

¹ Numbers in brackets refer to the references cited at the end of the paper.

tion on X or Y, that the d^* -topology is weaker than the k-topology (that is, every set open under the k-topology is also open under the d^* -topology). As remarked above, the compactness of X is a sufficient condition for the equivalence of the two topologies. We shall show in §3 that if X is completely regular and Y contains a non-degenerate arc, then the compactness of X is also a necessary condition for the equivalence of the d^* -topology and the k-topology.

2. Theorem. If Y is metrizable, then the d^* -topology is weaker than the k-topology.

We must show that if U is open under the k-topology and $f \in U$, then we can find $\epsilon > 0$ such that if $d^*(f, g) < \epsilon$, then $g \in U$.

By hypothesis, there exist compact subsets of X, K_1 , \cdots , K_n , and open subsets of Y, W_1 , \cdots , W_n , such that

$$f \in (K_1, W_1) \cap \cdots \cap (K_n, W_n) \subset U$$
.

Since each K_i is compact, so is each $f(K_i)$. Also, each $f(K_i)$ is disjoint from the corresponding closed set $Y - W_i$. But the distance between two disjoint subsets of metric space, one of which is compact and the other closed, is positive. Let ϵ be a positive number less than the smallest of the distances from the $f(K_i)$ to the corresponding $Y - W_i$.

Now suppose $d^*(f, g) < \epsilon$. If $x \in K_i$, then the distance from g(x) to $f(K_i)$ is less than ϵ , so $g(x) \in W_i$. Thus

$$g \in (K_1, W_1) \cap \cdots \cap (K_n, W_n) \subset U$$

so $g \in U$, as required.

3. THEOREM. Let X be a completely regular space, and let Y be a metrizable space containing a nondegenerate arc. Then a necessary condition that the d^* -topology and the k-topology be equivalent is that X be compact.

Let $\phi: I \to Y$ define a nondegenerate arc, where I denotes the closed unit interval. Pick $t_1 \in I$ so $y_1 = \phi(t_1)$ is different from $y_0 = \phi(0)$. Choose $\epsilon > 0$ so $d(y_0, y_1) \ge \epsilon$. Define f as the function of C which is constantly equal to y_0 .

Suppose the two topologies are equivalent. Then there must be compact subsets of X, K_1 , \cdots , K_n , and open subsets of Y, W_1 , \cdots , W_n , such that

$$f \in (K_1, W_1) \cap \cdots \cap (K_n, W_n) \subset S$$

where S is the set of functions $g \in C$ such that $d^*(f, g) < \epsilon$. We complete the proof by contradiction. If $X - (K_1 \cup \cdots \cup K_n)$ is empty, then X is the union of a finite number of compact sets, and hence must be compact.

Otherwise, choose $x_0 \in X - (K_1 \cup \cdots \cup K_n)$. Since x_0 and $(K_1 \cup \cdots \cup K_n)$ are disjoint closed subsets of the completely regular space X, there exists a continuous function $\theta \colon X \to I$ with $\theta(x) = 0$ on $(K_1 \cup \cdots \cup K_n)$ and $\theta(x_0) = t_1$. Define $g \colon X \to Y$ as the product $\phi\theta$; $g(x) = \phi(\theta(x))$. It is obvious that $g \in C$. Moreover, for $x \in K_i$, we have that $g(x) = \phi(\theta(x)) = \phi(0) = y_0 \in W_i$; so $g(K_i) \subset W_i$, and $g \in (K_1, W_1) \cap \cdots \cap (K_n, W_n)$.

On the other hand,

$$d^*(f, g) \ge d(f(x_0), g(x_0)) = d(y_0, \phi(\theta(x_0)))$$

$$= d(y_0, \phi(t_1))$$

$$= d(y_0, y_1) \ge \epsilon.$$

Hence $g \notin S$. This contradiction completes the proof.

4. A generalization. If instead of requiring Y to be metrizable, we insist only that it be a uniform space, a topology of uniform convergence can be defined on C. In this case the compactness of X is a sufficient condition for the equivalence of the topology of uniform convergence and the k-topology, the obvious analogue of Theorem 2 holds without further restriction, and the analogue of Theorem 3 holds if we require that Y have a separated uniform structure. The proofs are not essentially different from those above, but are somewhat longer.

REFERENCES

- 1. R. Arens, A topology for spaces of transformations, Ann. of Math. vol. 47 (1946) pp. 480-495.
- 2. R. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 429-432.
- 3. S. T. Hu, *Homotopy theory*, vol. 1 (Dittoed typescript prepared at Tulane University under the auspices of the Office of Naval Research), 1950.

University of California, Los Angeles