
HAMILTONIAN LOOPS

D. A. NORTON

A Hamilton loop is a loop in which every subloop is normal. This

definition is somewhat broader than the analogous definition of group

theory where a Hamiltonian group is restricted to be non-Abelian.

The structure of a Hamiltonian group is well known [4, pp. 129-131 ]l

—it is the direct product of an Abelian group whose elements have

odd order, an Abelian group with exponent 2, and a quaternion

group. The purpose of this paper is to investigate the structure of

Hamiltonian loops.

It is relatively easy to construct loops of any order (except 4) which

have no proper subloops and which are therefore trivially Hamil-

tonian. With a more careful construction it may be shown that given

any series of integers Mi, re2, • • • , »t where re.^4, i=\, 2, • • • , k,

there exists a loop Nk of order rei«2 • • • nk with subloops Ni, N2, • • • ,

Nk-i of order (wi), (rei«2), ■••,(«!••• «¡t-i) respectively such that

NiEN2E • • • ENk, each loop Nt, i<k, is normal in Nk, and A^

contains no other proper subloops.2 Thus we can construct a Hamil-

tonian loop with a prescribed series of composition. It becomes

apparent that for a complete structure theory some additional

hypotheses are necessary.

In Theorem I a necessary and sufficient condition that the direct

product of Hamiltonian loops be Hamiltonian is obtained. In

Theorems II to VII the structure of a Hamiltonian loop under suc-

cessively greater restrictions is discussed. In each case where an addi-

tional restriction is added to the loop, an example may be constructed

to show that there exist loops satisfying all previous conditions but

not the additional one, and which do not satisfy the resulting theorem.

The simplest assumption yielding significant results is that the loop

be power associative.

We shall list a few familiar facts concerning normal subloops. The

following lemma is due to Brück [2, p. 256].

Lemma A. // x and y are given elements of a loop and if two of the

three elements hi, h2, h3 are given elements of a normal subloop, then the

third may be uniquely found as an element of the same subloop where
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2 The constructions are cumbersome and since they seem only to have a nega-

tivistic value it has not seemed appropriate to include them.
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hix-h2y = h3xy.

As immediate corollaries of this we have hix=xhc, hix-y=h6-xy;

xhi-y = x-hty; xy-hi = x-yh-¡, where, in any equation, if one of hi is

given as an element of a normal subloop, the other is uniquely de-

termined as an element of the same subloop. For the following facts,

see, for instance, [l]. The order of a normal subloop divides the

order of the loop. The order of the union of normal subloops divides

the product of their orders. If A, B, and C are normal subloops and

if aEA, bEB, cEC, then ab=dba where dEAP\B; and ab-c
= e(a-bc) where eEAC\Br\C. If AP\B = l, then the union of A and

B is the direct product—that is, [A, B} =A XB.

Theorem I. The direct product of two Hamiltonian loops M and N is

Hamiltonian if and only if for every set of subloops H'EHEM,

K'EKEN such that H/H'^K/K', then H/H' is in the center of M/H'
and K/K' is in the center of N/K'.

Proof. If m, m'EM and n, n'EN and if mm' indicates multiplica-

tion in M and nn' indicates multiplication in N, then the elements

of the direct product MXN are of the form (m, n) and (m', «')

where multiplication is defined by the law (m, n)(m', n') = (mm', nn').

Moreover (m, n) =(m', n') if and only if m=m' and n = n'. If L is a

subloop of MXN, then L consists of elements (h, k) where hEM

and kEN. If lm is the unit element of M and 1„ is the unit element

of N, then (lm, 1„) is the unit element of MXN and any of its sub-

loops. Except where necessary for clarity, we shall omit the sub-

script and write this as (1, 1).

Let H be the set of elements of M and K be the set of elements of N

which go to make up the elements of a subloop L of MXN. The set

H can be readily seen to be a subloop of M and K a subloop of N.

Let H' he the subset of elements h' oí M such that (h', I) EL, and

let K' be the subset of elements k' of N such that (1, k')EL. The

sets H' and K' again are easily seen to be loops.

By the Hamiltonian character of M and N, H' is a normal subloop

of iîand K' is a normal subloop of K. Let L' = H'XK'. Then L' is a

subloop of L. Moreover it is a normal subloop oí MXN and there-

fore a normal subloop of L. Under the homomorphism of L on L/L',

there is established an isomorphism between the cosets of H in re-

spect to H' and the cosets of K in respect to K' so that H/H'^K/K'.

We have shown that to each subloop L of MXN there exist two

sets of loops, H'EHEM and K'EKEN, such that H/H'^K/K'.
Conversely, given two sets of loops and the indicated isomorphism

between the quotient loops, let Hh H2, • • ■ be the cosets of H in re-
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spect to H' and let Ku K2, • • • be the cosets of K in respect to K',

so ordered that Ht corresponds to A',- under the isomorphism. Then

the set of elements

(hi, ki), hi E Hi, h E Ki, i = 1, 2, • • -,

may be readily seen to make up a loop L which is a subloop of

MXN.
The group of permutations generated by all permutations RxRyR^

and RyLxR^1 is the inner mapping group of the loop. Brück [2, p. 259]

has shown that a necessary and sufficient condition that a subloop

be normal is that it be mapped into itself by all permutations of the

inner mapping group. A central element of the loop is carried into

itself by any permutation of the inner mapping group. Let X be

any mapping of the inner mapping group of the loop MXN; then

X = QX, 23) where U and 23 are inner mappings of M and N respective-

ly, and

(h, k)X = (h, k)(VL, S3) = (h\X, ¿23).

If H/H' is in the center of M/H', each inner mapping of M/H'

carries each element of H/H' into itself; or, that is, each inner map-

ping U of M maps each coset hH' of H in respect to H' into itself.

Similarly if K/K' is in the center of N/K', each inner mapping 23 of

N carries each coset kK' of K in respect to K' into itself. If % is any

inner mapping oí MXN and (h, k) is an element of L, then (h, k)X

= (A, k)(VL, 23)=(M1, ¿23) = (Ä, JE), where h~EhH' and k~EkK'. Since
the set (hH', kK')EL, we have (h, k)EL and L is normal.

Conversely, if L is a normal subloop of MX N, and if U is any inner

mapping of M, and 3 the identity transformation of N, then (U, 30

is an inner mapping of MXN. If (h, k) EL, then (h, k)(\X, 30 = (hU, k)
and thus hUEhH' as proved above. So 11 maps each coset hH' into it-

self and H/H' is in the center of M/H'. Similarly K/K' is in the

center of N/K'.

Theorem IL A power associative, Hamiltonian loop Hin which every

element has finite order is the direct product of p-loops.

Proof. A p-loop is a loop in which every element has order a power

of the prime number p.

Let Hi be the set of elements hEH where the order of h is a power of

the prime pi. The set Hi is a loop. It clearly contains the unit element.

If x, yEHi, then there exist integers r, s such that xr=y" = 1. Consider

the element xy. By a simple induction proof using Lemma A we

shall show that (xy)r=xTy( lor some integer t. Suppose (xy)m = xmyn
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for some integer ». Then from the power associativity and from

Lemma A and its corollaries we have

(xy)m+1 = (xmyn)(xy) = (xmx)y'

for some element y'E {y}, since y, ynE{y}, a normal subloop of H.

But y has finite order, so that y'' =y" for some integer q, and (xy)m+1

= xm+1y. Therefore (xy)r' = (xryt)3=yt' = (y3)' = l. But there exist

integers u, v such that r=p", s=p\, by the definition of Hi, and

rs=p"+'. The element xy belongs to H, and Hi is closed under multi-

plication. If ax=y, then a=yxw for some integer w, and ars = l as

above, so that aEHt. Similarly, if xb =y, bEH{.

Since HiEH and since /L/\ify = 1, i^j, the product YL* Hi is a

direct product. Moreover YliHiEH. Conversely, for any hEH, {h}

is a Hamiltonian group and can be written by group theory as the

product of /»-groups so Ä = axa2 • • • , where a,£i7¿, and therefore

hE YLf Hi. Combining these we have the theorem.

It is possible to give examples of loops which are Hamiltonian and

power associative but which do not satisfy the following structure

theorems so that some additional restrictions are necessary. Let us

assume that the loop is di-associative or, that is, that every two ele-

ments of the loop generate a group.

Theorem III. A commutative, di-associative, Hamiltonian loop H is

an Abelian group.

Proof. Assume that H is not Abelian. Then there exist elements

a, b, c such that

(1) a-bc = d(abc), d ^ 1.

Since {a}, {b}, {c} are normal subloops of H, dE {a}i\{b}r\{c},

and since they are Hamiltonian groups, d = ai = b' = ck for some set of

integers i,j, k (not necessarily positive). Let m=ikj. Then

(2) (a bc)m = [d(ab■ c)]m = dm(ab■ c)m.

Now by the di-associativity and commutativity,

(a-bc)m = am(bc)m = ambmcm = dikdikd1' = dii+ik+ik.

Similarly (ab-c)m = dii+ik+ik so, from (2), dm = l, and thus aim = b'm

— ckm _ i -yYg have shown that every element not in the associator has

finite order.

Let A be the subset of H consisting of all elements of finite order.

The set A is a loop. It remains to be shown that A is associative. By

Theorem II, ^4 is the direct product of £-loops, so it will be sufficient
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to show that a commutative, di-associative, Hamiltonian ¿>-loop is

associative. We use the fact that in an Abelian /»-group with two

generators a, b, if the order of a is greater than or equal to the order

of b, then there exists an element £>i such that {a, b} = {a, bi} where

{a}r\{bi}=\*
Let a, b, c be three elements of such a />-subloop of H. Of the orders

of the three elements suppose that the order of a is maximal. Since

two elements generate a group, there exist elements bi, Ci of H such

that {a, b} = {a, bA where {ajr^joi} =1, and such that {a, c}

= {a, Ci] where {a}n{ci}=l. Therefore {ar}n{ej}=l for any

integers r, s and we have arb[-ct=d(ar-b[ct) where dE{ar}r\{b{}

r\{c'} =1. Then b=amb" and c = avc\ for some set of integers

m, re, p, q. So ab-c = (a-amb")c = (am+1b")c = am+1(b"-c) =a(am-bîc)

= a(amb\-c)=a-bc. In exactly a similar way it may be shown that

the three elements associate for any permutation of the elements or

if b or c has the maximal order.

Corollary 11 la. A Hamiltonian, di-associative p-loop with p an

odd integer is an Abelian group.

Proof. By Theorem III it is sufficient to show that the loop is

commutative. If it contains two elements a, b which do not com-

mute, {a, b} is a Hamiltonian group and so contains an element of

order 4. Since the loop is Hamiltonian, p must be divisible by 4;

however, p is assumed odd.

Theorem IV. In a Hamiltonian, di-associative loop H which is not

commutative, every element has finite order.

Proof. If x and y are two elements of H which do not commute,

then {x, y} is a Hamiltonian group which contains elements a and

b which generate a quarternion group so that ab=bsa, ai = bi = (ab)i

= 1, and a2 = b2 = (ab)2^ I.

The set of elements of a loop which commute with every element

of the loop we shall call the commutator of the loop. If c is not an

element of the commutator, there exists an element z of H such that

czt^zc and {c, z] is a Hamiltonian group. Thus c has finite order.

If c is an element of the commutator, and if abc = d(abc), when

squared, this becomes (ab)2c2 = d2(a-bc)2, which gives

(3) a2c2 = d2(abc)2.

Since dE{a}, we have d = l, a, a2, or a3. If d=a or a3,  {a} = {d}

3 If am = bn, a' = b' = l are the generating relationships, then bi=*axb where

x — (t — n)m/n2.
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C {c} and {a, b, c} = {b, c}, a group, so d = 1 contrary to our assump-

tion. If we assume d = 1 or a2, then d2 = 1 and (3) becomes a2c2

= (abc)2. If a and be do not commute, be has finite order, and so

does c. Suppose abc = bc-a. Then (3) becomes

_a2c2 = a2(bc)2 = a2(b2c2).

Therefore b2 = 1, a contradiction since ¿> has order 4.

Theorem V. A Hamiltonian, di-associative loop L is either an

Abelian group or the direct product of an Abelian group with elements

of odd order and a loop H with the following properties :

(i) The commutator of H consists of the elements of order I or 2,

(ii) If a, b, c, ■ ■ ■ are elements not in the commutator, then a2 = b2

= c2= ■ ■ ■9¿l,ai = bi = ci= •••-!.

(iii) If a, b do not commute, {a, b} is a quaternion group. (Since His

assumed not Abelian, there exists at least one such pair of elements.) If a,

b commute, then a = tb where t is an element of the commutator.

(iv) If a, b do not commute and if h is an element of H which com-

mutes with every element of {a, b}, then h is an element of the com-

mutator.

Proof. If L is commutative, by Theorem III it is an Abelian group.

If it is not commutative, by Theorem IV every element has finite

order and so by Theorem II it is the direct product of £-loops. By

Corollary 11 la, L is then the direct product of a 2-loop H and an

Abelian group with elements of odd order.

From the di-associativity, every two elements a, b of H generate

a subgroup which is either Abelian or Hamiltonian, and in the latter

case it is a quaternion group.4 Since H is not Abelian, it contains at

least two elements a, b such that {a, b} =Q is a quaternion group.

If z is an element not in the commutator of H, there exists hEH

such that {h, z] is a quaternion group, and so z has order 4.

To show that the commutator consists of the unit element and

the elements of order 2, we note first that if c2 = 1, then ac = da where

¿G(c} so d = c. Conversely suppose that c commutes with every

element of Q. There exists ¿G{a}n{&}n{c} such that

a2-c2 = (ab)2-c2 = (ab-c)2 = (d[a-bc])2 = d2(a-bc)2.

By the same argument as in the proof of Theorem IV, a"2 = 1 and

this becomes:

4 The author wishes to thank the referee for his suggestions which substantially

shorten this proof.
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a2c2 = (a-bc)2.

If a and be commute, this further becomes

a2c2 = a2(bc)2 = a2-b2c2.

So ¿>2 = 1, a contradiction to the choice of b. If a and be do not com-

mute, they generate a quaternion group and a2 = (bc)2=b2c2=a2c2

since a2 = b2. Therefore c2 = l.

We have proved, moreover, part (iv). If c is not an element of the

commutator, there exists an element qEQ which does not commute

with c so {q, c] is a quaternion group and q2 = c2, g4 = c4 = l.

In general, if x, y commute but are not elements of the commutator,

since y4 = 1 we have x = xy4 = (xyz)y. Let / = xy3. Then t2 = (xy3)2 = 1, so

/ is an element of the commutator.

The complete structure theory of the loop may be given if an addi-

tional associativity condition is imposed. Condition A: if three dis-

tinct elements of a loop associate in some order, then the subloop

generated by the three elements is a group. In particular the class of

Moufang loops [2, p. 293] satisfies Condition A; however, there

exist examples of loops which are di-associative and satisfy Condition

A but which are not Moufang.

If the Latin square given below is considered as the multiplication

table of a loop, every two independent elements generate a group of

order 4 so it is di-associative. No three independent elements asso-

ciate in any order so that the loop trivially satisfies Condition A.

However, it is not Moufang since [(3 • 5) • 8] ■ 5 = 4 while 3 • [5 • (8 • 5) ]

= 7. The loop is

123456789 10

214389 10 567

34129 10 8756

4321 10 89675

589 10 176234

69 10 87 15423

7 10 89651342

85762431 10 9

9657324 10 18

10 765432981.

The basis elements of the Cayley-Dickson algebra [3, p. 561] form

a loop with three generators ait a2, a3 which satisfy the relationships:
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4 2 2 3 .
ai = 1;       a¿ = ay;        a,a,- = a,a<; i ^ j;

i
aiOj-ak = ai-ajOk; i, j, k all different.

This loop may be conveniently called the Cayley loop.

Theorem VI. A Hamiltonian, di-associative loop satisfying Condi-

tion A is (i) an Abelian group, or (ii) a Hamiltonian group, or (iii)

the direct product of a Cayley loop, an Abelian group with exponent 2,

and an Abelian group with elements of odd order.

Proof. Applying Theorem V we have left only to show that the

loop H there defined is the direct product of a Cayley loop and an

Abelian group with exponent 2.

Let the elements a and b of H generate a quaternion group Q, and

let K be the set of all elements of H not in Q which commute with at

least one element of order 4 of Q. If k is an element of order 4 of K,

suppose that ak = ka. (If k commutes with some other element of

order 4 of Q, the proof is the same.) Then {a, k} = [a, ki} where

k=aki, so ki=a3k. By Theorem V(i) and V(ii), k2=a2 and we have

k\=a2k2 = l, since a and k are commutative. Let Ki consist of the

unit element and all elements of H of order 2 except a2. Then Ki is

clearly a loop, moreover an Abelian group with exponent 2. Also ki is

an element of Ki, so k, which equals aki, is an element of QXKi.

Therefore {Q, K} EQXKi. Conversely since K~0)Ki, we have {Q, K]

DQXKi. Combining these we have [Q, K} =QXKi.

Let L be the set of elements of H not in QXKi. Then an element

of L does not commute with any element of order 4 of Q. If an ele-

ment s of L associates in any order with two independent elements

of Q—suppose they are a and b—then {a, b, s} is a group by Condi-

tion A, and by the theory of Hamiltonian groups {a, b, s} =QX{si}

where Si = l. Then s=ysi for some element y of order 4 of Q. So

ys = yysi = ysi-y = sy

and s commutes with y, in contradiction to the choice of L. Therefore

{a, b, s} is not a group for any 5 in L.

Let c be any element of L. That C={a,b, c} is a Cayley loop may

be easily seen by Theorem V and the preceding remarks. Let K be

the set of elements which commute with at least one element of

order 4 of C. As before {C, K} =CXKi with Ki defined as above.

Also as before if L is the set of elements of H not in CXKi, then

{x, y, s} is not a group for any pair of independent elements *, y of C

and any element s of L. We shall show that L is an empty set.

Let d be any element of L. Then
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ab-cd = (a3b-c)d = (a-bc)d = a3(bcd) = a(b-cd),

so {a, b, cd} is a group by Condition A. By the theory of Hamil-

tonian groups, {a, b, cd} = {a, b}x{t} where t2 = \. Therefore

cd = qt for some q an element of {a, b}, and d = czq ■ t ; so d is an element

of CXKi contrary to its choice. The set L must be empty and

H=CXKi.

Theorem VII (Converse of Theorem V). If A is an Abelian

group with elements of odd order, if T is an Abelian group with ex-

ponent 2, and if K is a di-associative loop with the following properties:

(i)  The elements of K have order 1, 2, or 4,

(ii) K contains at least two elements a and b such that {a, b} is a

quaternion group,

(iii) Every element of order 2 of K is in the center,

(iv) If x, y, z are elements of order 4 of K, then x2=y2 = z2, xy=d-yx

where d = i or x2, and xy-z = e(x ■ yz) where e = \ or x2;

then their direct product AXTXK is a di-associative Hamiltonian loop.

Proof. It is clear from Theorem I that if TXK is Hamiltonian,

then AXTXK is Hamiltonian since the order of an element of A

is odd while the order of an element of TXK is 2".

To prove that K is Hamiltonian we note that if ^ß is any permuta-

tion of the inner mapping group of K and kEK, then kty =tk where

t = \ or x2. For instance, if ty=Rx,y, then

kty = kRxRyRxy = (kx-y)Rxy = (tk ■xy)Rzy = tk

where / = 1 or x2. If k has order 2, since it is central, / = 1 and kty = k.

Let K' be any subloop of K. If K' contains an element k of order 4,

then k2=x2, so for any k'EK', then K' contains x2k'. Thus K' is in-

variant under any transformation of the inner mapping group. If

K' contains no element of order 4, its elements are all central and K'

is invariant.

To prove that TXK is Hamiltonian, suppose that K' and K' are

subloops of K and that T' and T" are subloops of T such that

K'/K'^T'/T'. The loop T'/T' is Abelian with exponent 2 and there-

fore so is K'/K'. Every element of K'/K' has order 2 and so it is in

the center of K/K'. By Theorem I, A XK is Hamiltonian.

Corollary Vila (Converse of Theorem VI). The direct product

of an Abelian group with elements of odd order, an Abelian group with

exponent 2, and a Cay ley loop is a di-associative Hamiltonian loop

satisfying Condition A.
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