HAMILTONIAN LOOPS
D. A. NORTON

A Hamilton loop is a loop in which every subloop is normal. This
definition is somewhat broader than the analogous definition of group
theory where a Hamiltonian group is restricted to be non-Abelian.
The structure of a Hamiltonian group is well known [4, pp. 129-131 ]!
—it is the direct product of an Abelian group whose elements have
odd order, an Abelian group with exponent 2, and a quaternion
group. The purpose of this paper is to investigate the structure of
Hamiltonian loops.

It is relatively easy to construct loops of any order (except 4) which
have no proper subloops and which are therefore trivially Hamil-
tonian. With a more careful construction it may be shown that given

any series of integers #i, %s, + - -, m; wWhere n;7%4, 1=1, 2, - - -, k,
there exists a loop N; of order mn; - - - n; with subloops Ny, Ng, - - -,
Ni_ of order (n1), (mms), - -+, (m1 - + - nr—1) respectively such that

N,CN,C - - - CNy, each loop N;, i<k, is normal in N, and N;
contains no other proper subloops.2 Thus we can construct a Hamil-
tonian loop with a prescribed series of composition. It becomes
apparent that for a complete structure theory some additional
hypotheses are necessary.

In Theorem I a necessary and sufficient condition that the direct
product of Hamiltonian loops be Hamiltonian is obtained. In
Theorems II to VII the structure of a Hamiltonian loop under suc-
cessively greater restrictions is discussed. In each case where an addi-
tional restriction is added to the loop, an example may be constructed
to show that there exist loops satisfying all previous conditions but
not the additional one, and which do not satisfy the resulting theorem.
The simplest assumption yielding significant results is that the loop
be power associative.

We shall list a few familiar facts concerning normal subloops. The
following lemma is due to Bruck [2, p. 256].

LEMMA A. If x and vy are given elements of a loop and if two of the
three elements hy, hs, hs are given elements of a normal subloop, then the
third may be uniquely found as an element of the same subloop where
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1 Numbers in brackets refer to the references cited at the end of the paper.

2 The constructions are cumbersome and since they seem only to have a nega-
tivistic value it has not seemed appropriate to include them.
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hix-hoy = hs-xy.

As immediate corollaries of this we have hx=xhy; bix-y="hs-xy;
xh1-y=x-hey; xy-hi=x-yh;, where, in any equation, if one of %; is
given as an element of a normal subloop, the other is uniquely de-
termined as an element of the same subloop. For the following facts,
see, for instance, [1]. The order of a normal subloop divides the
order of the loop. The order of the union of normal subloops divides
the product of their orders. If 4, B, and C are normal subloops and
if a€4, bEB, ¢c&C, then ab=d-ba where dEANB; and ab-c
=e(a-bc) where e€ANBNC. If ANB=1, then the union of 4 and
B is the direct product—that is, {4, B} =4 XB.

THEOREM I. The direct product of two Hamiltonian loops M and N is
Hamqiltonian if and only if for every set of subloops H' CHCM,
K'CKCN such that H/H'>=K/K', then H/H' is in the center of M /H’
and K/K' is in the center of N/K'.

Proor. If m, m' € M and n, ' €N and if mm’ indicates multiplica-
tion in M and nn’ indicates multiplication in N, then the elements
of the direct product M XN are of the form (m, n) and (m’, n’)
where multiplication is defined by the law (m, n)(m/, n’) = (mm’, nn').
Moreover (m, n)=(m’, n’) if and only if m=m' and n=n'. If L is a
subloop of M XN, then L consists of elements (k, k) where hEM
and REN. If 1, is the unit element of M and 1, is the unit element
of N, then (1., 1,) is the unit element of M XN and any of its sub-
loops. Except where necessary for clarity, we shall omit the sub-
script and write this as (1, 1).

Let H be the set of elements of M and K be the set of elements of N
which go to make up the elements of a subloop L of M XN. The set
H can be readily seen to be a subloop of M and K a subloop of N.
Let H’ be the subset of elements #’ of M such that (#’, 1)EL, and
let K’ be the subset of elements k' of N such that (1, 2')EL. The
sets H’ and K’ again are easily seen to be loops.

By the Hamiltonian character of M and N, H’ is a normal subloop
of H and K’ is a normal subloop of K. Let L’=H’'XK’. Then L' is a
subloop of L. Moreover it is a normal subloop of M XN and there-
fore a normal subloop of L. Under the homomorphism of L on L/L’,
there is established an isomorphism between the cosets of H in re-
spect to H’ and the cosets of K in respect to K’ so that H/H'>~K/K'.

We have shown that to each subloop L of M XN there exist two
sets of loops, H' CHCM and K’CKCN, such that H/H'>~K/K'.
Conversely, given two sets of loops and the indicated isomorphism
between the quotient loops, let H;, H;, - - - be the cosets of H in re-
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spect to H’ and let K,, K, - - - be the cosets of K in respect to K’,
so ordered that H; corresponds to K; under the isomorphism. Then
the set of elements

(hi’ ki)r hi € Hi, ki E Ki, 1= 1, 2, sy

may be readily seen to make up a loop L which is a subloop of
MXN.

The group of permutations generated by all permutations R,R,R;;}
and R,L.R;} is the inner mapping group of the loop. Bruck [2, p. 259]
has shown that a necessary and sufficient condition that a subloop
be normal is that it be mapped into itself by all permutations of the
inner mapping group. A central element of the loop is carried into
itself by any permutation of the inner mapping group. Let T be
any mapping of the inner mapping group of the loop M XN; then
T =(U, B) where Ul and B are inner mappings of M and N respective-
ly, and

(h, )T = (k, H)(U, B) = (A1, kDB).

If H/H' is in the center of M/H’, each inner mapping of M/H’
carries each element of H/H' into itself; or, that is, each inner map-
ping U of M maps each coset hH’ of H in respect to H’ into itself.
Similarly if K/K’ is in the center of N/K', each inner mapping 8 of
N carries each coset 2K’ of K in respect to K’ into itself. If & is any
inner mapping of M XN and (k, k) is an element of L, then (k, £)Z
=(h, B)(U, B) =k, kB) =(k, k), where kERH’ and kE€kK’. Since
the set (kH’, kK')CL, we have (k, k) EL and L is normal.

Conversely, if L is a normal subloop of M XN, and if Ul is any inner
mapping of M, and & the identity transformation of N, then (U, J)
is an inner mapping of M X N. If (k, k) EL, then (k, E)(U, J) = (AU, &)
and thus XU ERH’ as proved above. So Il maps each coset AH’ into it-
self and H/H' is in the center of M/H’. Similarly K/K' is in the
center of N/K’.

THEOREM 11. A power associative, Hamiltonian loop H in which every
element has finite order is the direct product of p-loops.

PROOF. A p-loop is a loop in which every element has order a power
of the prime number . ,

Let H; be the set of elements k& H where the order of % is a power of
the prime p;. The set H; is a loop. It clearly contains the unit element.
If x, yE H;, then there exist integers 7, s such that " =y*=1. Consider
the element xy. By a simple induction proof using Lemma A we
shall show that (xy)"=x"y* for some integer ¢. Suppose (xy)™=x™y"
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for some integer n. Then from the power associativity and from
Lemma A and its corollaries we have

(xy) ™t = (xmy™)(xy) = (x™x)y’

for some element y'E { y} , since ¥, y*"E { y} , a normal subloop of H.
But y has finite order, so that ¥’ =y? for some integer ¢, and (xy)™*!
=xmtlye Therefore (xy)?=(x"y!)*=y?=(y*)!=1. But there exist
integers u, v such that r=p{, s=p;, by the definition of H;, and
rs=p{*T*. The element xy belongs to H; and H; is closed under multi-
plication. If ax=y, then a=yx* for some integer w, and a™=1 as
above, so that e € H,. Similarly, if xb=1y, bEH,.

Since H;CH and since H;\H;=1, 177, the product H; H;is a
direct product. Moreover []: H:C H. Conversely, for any hEH, {h}
is a Hamiltonian group and can be written by group theory as the
product of p-groups so A=aia, - - -, where a;EH;, and therefore
k€ II; Hi. Combining these we have the theorem.

It is possible to give examples of loops which are Hamiltonian and
power associative but which do not satisfy the following structure
theorems so that some additional restrictions are necessary. Let us
assume that the loop is di-associative or, that is, that every two ele-
ments of the loop generate a group.

TueOREM 111. A commutative, di-associative, Hamiltonian loop H is
an Abelian group.

Proor. Assume that H is not Abelian. Then there exist elements
a, b, ¢ such that

)] a-bc = d(ab-c), d#1.

Since {a}, {8}, {¢} are normal subloops of H, ac{a}n{p}nic},
and since they are Hamiltonian groups, d =a®=>57=c* for some set of
integers 7, j, £ (not necessarily positive). Let m =1kj. Then

(2) (a-bc)™ = [d(ab-c)]™ = d™(ab-c)™.
Now by the di-associativity and commutativity,
(a.bc)m = am(bc)m = am.bmcm = dik.dilcdii —_ dii+ik+ik.

Similarly (ab-c)™=d#+#+i* g0, from (2), d»=1, and thus aim=pim
=c¢*m=1. We have shown that every element not in the associator has
finite order.

Let A be the subset of H consisting of all elements of finite order.
The set 4 is a loop. It remains to be shown that 4 is associative. By
Theorem 11, 4 is the direct product of p-loops, so it will be sufficient
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to show that a commutative, di-associative, Hamiltonian p-loop is
associative. We use the fact that in an Abelian p-group with two
generators a, b, if the order of a is greater than or equal to the order
of b, then there exists an element b; such that {a, b} = {a, b1} where
{a}N{b} =123

Let a, b, ¢ be three elements of such a p-subloop of H. Of the orders
of the three elements suppose that the order of a is maximal. Since
two elements generate a group, there exist elements by, ¢; of H such
that {a, b} ={a, b} where {a}N {8} =1, and such that {a, ¢}
={a, a} where {a}N{c}=1. Therefore {a7}N{bj} =1 for any
integers 7, s and we have a'B}-ct=d(a"-bic*) where d€{a} N {b}}
N{ct} =1. Then b=amb} and c=a? for some set of integers
m, n, p, ¢. So ab-c=(a-amb})c=(a™tb})c=a™t1(b}-c) =a(a™ bic)
=a(a™b}-c) =a-bc. In exactly a similar way it may be shown that
the three elements associate for any permutation of the elements or
if b or ¢ has the maximal order.

CoroLLARY IIla. A Hamiltonian, di-associative p-loop with p an
odd integer 1s an Abelian group.

Proor. By Theorem III it is sufficient to show that the loop is
commutative. If it contains two elements @, b which do not com-
mute, {a, b} is a Hamiltonian group and so contains an element of
order 4. Since the loop is Hamiltonian, » must be divisible by 4;
however, p is assumed odd.

THEOREM IV. In a Hamiltonian, di-associative loop H which is not
commutative, every element has finite order.

Proor. If x and y are two elements of H which do not commute,
then {x, y} is a Hamiltonian group which contains elements @ and
b which generate a quarternion group so that ab=b%, a*=>5b*=(ab)*
=1, and a?=b2=(ab)?#1. _

The set of elements of a loop which commute with every element
of the loop we shall call the commutator of the loop. If ¢ is not an
element of the commutator, there exists an element z of H such that
cz#zc and {c, z} is a Hamiltonian group. Thus ¢ has finite order.

If ¢ is an element of the commutator, and if ab-c=d(a-bc), when
squared, this becomes (ab)2c?=d?*(a - bc)?, which gives

3) a?c® = d*(a-bc)?.
Since dE€ {a}, we have d=1, g, a?, or @ If d=a or a* {a}={d}

3If gm=b" a*=b'=1 are the generating relationships, then b;=a% where
x=(t—n)m/n%
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C{c} and {a, b, ¢} ={b, ¢}, a group, so d=1 contrary to our assump-
tion. If we assume d=1 or a2, then d?=1 and (3) becomes aZ?
=(a-bc)? If a and bc do not commute, bc has finite order, and so
does ¢. Suppose a-bc=bc-a. Then (3) becomes

a%c? = a*(bc)? = a?*(b%?).
Therefore b2=1, a contradiction since b has order 4.

THEOREM V. A Hamiltonian, di-associative loop L 1is either an
Abelian group or the direct product of an Abelian group with elements
of odd order and a loop H with the following properties:

(1) The commutator of H consists of the elements of order 1 or 2,

(ii) If a, b, ¢, « « - are elements not in the commutator, then a?=>b?
=¢= .. .#1 gt=bl=ct= - .. =1.

(iii) If a, b do not commute, {a, b} 1s a quaternion group. (Since H is
assumed not Abelian, there exists at least one such pair of elements.) If a,
b commute, then a =tb where t is an element of the commutator.

(iv) If a, b do not commute and if h is an element of H which com-
mutes with every element of {a, b}, then h 1s an element of the com-
mutator.

Proor. If L is commutative, by Theorem III it is an Abelian group.
If it is not commutative, by Theorem IV every element has finite
order and so by Theorem II it is the direct product of p-loops. By
Corollary Illa, L is then the direct product of a 2-loop H and an
Abelian group with elements of odd order.

From the di-associativity, every two elements a, b of H generate
a subgroup which is either Abelian or Hamiltonian, and in the latter
case it is a quaternion group.4 Since H is not Abelian, it contains at
least two elements a, b such that {a, b} =( is a quaternion group.
If z is an element not in the commutator of H, there exists hEH
such that {#, z} is a quaternion group, and so z has order 4.

To show that the commutator consists of the unit element and
the elements of order 2, we note first that if ¢2=1, then ac=da where
dE{c} so d=c. Conversely suppose that ¢ commutes with every
element of Q. There exists d€ {a} N {b} N {c} such that

a?-c? = (ab)?-¢? = (ab-¢)? = (d[a-bc])? = d%(a-bc)2

By the same argument as in the proof of Theorem IV, d?=1 and
this becomes:

4 The author wishes to thank the referee for his suggestions which substantially
shorten this proof.
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a%?* = (a-bc)%
If @ and bc commute, this further becomes
a?c? = a?(bc)? = a? b%*.

So b%2=1, a contradiction to the choice of b. If @ and bc do not com-
mute, they generate a quaternion group and a?=(bc)?=>b%?=a%c?
since a?=>52 Therefore c?2=1.

We have proved, moreover, part (iv). If ¢ is not an element of the
commutator, there exists an element ¢&Q which does not commute
with ¢ so {g, ¢} is a quaternion group and ¢?=c?, ¢*=c*=1.

In general, if x, y commute but are not elements of the commutator,
since y*=1 we have x =xy*=(xy*)y. Let t =xy%. Then = (xy%)2=1, so
t is an element of the commutator.

The complete structure theory of the loop may be given if an addi-
tional associativity condition is imposed. Condition A: if three dis-
tinct elements of a loop associate in some order, then the subloop
generated by the three elements is a group. In particular the class of
Moufang loops [2, p. 293] satisfies Condition A; however, there
exist examples of loops which are di-associative and satisfy Condition
A but which are not Moufang.

If the Latin square given below is considered as the multiplication
table of a loop, every two independent elements generate a group of
order 4 so it is di-associative. No three independent elements asso-
ciate in any order so that the loop trivially satisfies Condition A.
However, it is not Moufang since [(3-5)-8]-5=4 while 3-[5-(8-5)]
=17. The loop is

1 23 4567 8 910
21 4 3 8 910 5 6 7
3412910 87 5 6
4 3 2 110 8 9 6 7 5
5 8910 1 7 6 2 3 4
6 910 8 71 5 4 2 3
710 8 9 6 51 3 4 2
8 576 2 43 110 9
9 6 57 3 2 410 1 8
1076 5 43 29 8 1.

The basis elements of the Cayley-Dickson algebra [3, p. 561] form
a loop with three generators a1, @, a; which satisfy the relationships:
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4 2 2 3 ..
=1, a=a; aa;=a0 17,
3 .. .
8:0; Gr = G;*Q;0k; 1, j, k all different.

This loop may be conveniently called the Cayley loop.

THEOREM VI. A Hamailtonian, di-associative loop satisfying Condi-
tion A s (i) an Abelian group, or (ii) a Hamiltonian group, or (iii)
the direct product of a Cayley loop, an Abelian group with exponent 2,
and an Abelian group with elements of odd order.

Proor. Applying Theorem V we have left only to show that the
loop H there defined is the direct product of a Cayley loop and an
Abelian group with exponent 2.

Let the elements a¢ and b of H generate a quaternion group Q, and
let K be the set of all elements of H not in Q which commute with at
least one element of order 4 of Q. If k is an element of order 4 of K,
suppose that ak=ka. (If # commutes with some other element of
order 4 of Q, the proof is the same.) Then {a, k} ={a, b} where
k=aki, so ky=a®k. By Theorem V(i) and V(ii), k2=a? and we have
kE2=a%?=1, since ¢ and %k are commutative. Let K; consist of the
unit element and all elements of H of order 2 except a2 Then K is
clearly a loop, moreover an Abelian group with exponent 2. Also & is
an element of K, so k, which equals ak;, is an element of QXK.
Therefore {Q, K} CQX K. Conversely since KDKj, we have {Q, K}
DQ XK. Combining these we have {Q, K } =QXK.

Let L be the set of elements of H not in Q X K;. Then an element
of L does not commute with any element of order 4 of Q. If an ele-
ment s of L associates in any order with two independent elements
of Q—suppose they are ¢ and b—then {a, b, s} is a group by Condi-
tion A, and by the theory of Hamiltonian groups {a, b, s} =QX {51}
where s3=1. Then s=ys; for some element y of order 4 of Q. So

ys = Y-ys = Yysiey = sy
and s commutes with y, in contradiction to the choice of L. Therefore
{a, b, s} is not a group for any s in L.

Let ¢ be any element of L. That C= {a, b, c} is a Cayley loop may
be easily seen by Theorem V and the preceding remarks. Let K be
the set of elements which commute with at least one element of
order 4 of C. As before {C, K} =CXK; with K; defined as above.
Also as before if L is the set of elements of H not in CXKj, then
{x, 9, §} is not a group for any pair of independent elements x, y of C
and any element § of L. We shall show that L is an empty set.

Let d be any element of L. Then
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ab-cd = (a®-c)d = (a-bc)d = a¥(bc-d) = a(b-cd),

S0 {a, b, cd} is a group by Condition A. By the theory of Hamil-
tonian groups, {a, b, cd}=1{a, b} X{t} where t2=1. Therefore
¢d =gt for some ¢ an element of {a, b } ,and d =¢%q-t;so d is an element
of CXK; contrary to its choice. The set L must be empty and
H=CXK,.

THEOREM VII (CONVERSE OF THEOREM V). If 4 1s an Abelian
group with elements of odd order, if T 1s an Abelian group with ex-
ponent 2, and if K is a di-associative loop with the following properties:

(1) The elements of K have order 1, 2, or 4,

(ii) K contains at least two elements a and b such that {a, b} s a
quaternion group,

(iii) Every element of order 2 of K 1is in the center,

(iv) If x, v, z are elements of order 4 of K, then x*=y?*=22 xy=d-yx
where d=1 or x%, and xy-z=e(x-yz) where e=1 or x?;
then their direct product A X T X K 1s a di-associative Hamiltonian loop.

Proor. It is clear from Theorem I that if T XK is Hamiltonian,
then A XT XK is Hamiltonian since the order of an element of A
is odd while the order of an element of T'XK is 2"

To prove that K is Hamiltonian we note that if P is any permuta-
tion of the inner mapping group of K and k€K, then kP =tk where
t=1 or x% For instance, if =R, ,, then

BB = kR.R,R,, = (kx-y)Rzy = (th-xy)Roy = Lk

where t=1 or x2 If k has order 2, since it is central, =1 and kP =k.
Let K’ be any subloop of K. If K’ contains an element % of order 4,
then k2=x?, so for any k'EK’, then K’ contains x2k’. Thus K’ is in-
variant under any transformation of the inner mapping group. If
K’ contains no element of order 4, its elements are all central and K’
is invariant.

To prove that T XK is Hamiltonian, suppose that K’ and K’ are
subloops of K and that 7’ and T’ are subloops of T such that
K'/K'>~T'/T'. The loop T’/T"' is Abelian with exponent 2 and there-
fore so is K’/K’. Every element of K’/K’ has order 2 and so it is in
the center of K/K'. By Theorem I, 4 XK is Hamiltonian.

CoroLLARY VIIa (CoNVERSE oF THEOREM VI). The direct product
of an Abelian group with elements of odd order, an Abelian group with
exponent 2, and a Cayley loop is a di-associative Hamiltonian loop
satisfying Condition A.



1952] HAMILTONIAN LOOPS 65

REFERENCES

1. A. A. Albert, Quasigroups. I, Trans. Amer. Math. Soc. vol. 54 (1943) pp. 507-
519. )

2. R. H. Bruck, Contributions to the theory of loops, Trans. Amer. Math. Soc. vol.
60 (1946) pp. 245-354.

3. H. S. M. Coxeter, Integral Cayley numbers, Duke Math. J. vol. 13 (1946) pp.
561-577.

4. H. Zassenhaus, The theory of groups, New York, Chelsea, 1949,

UNIVERSITY OF WISCONSIN



