COMMUTATOR CALCULUS AND LINK INVARIANTS

K. T. CHEN

- 1. Introduction. Let G be a finitely presented group such that the abelianized group G/[G, G] has a basis of n elements, which may possibly include elements of finite order. Let G have a presentation of n+k generators and k+q relations. (Necessarily, $q \ge 0$.) Then, for each integer d>0, a group \emptyset presented by n generators and q relations may be constructed such that $\mathfrak{G}/\mathfrak{G}_d$ is isomorphic with G/G_d , where \mathfrak{G}_d and G_d are the dth lower central commutator subgroups of \mathfrak{G} and G respectively. In the case that G is the group of a link L consisting of n components, \emptyset is a group presented by n generators and n relations. This is quite a helpful reduction in the number of generators and relations in the presentation of G/G_d , which determines the finitely generated abelian factor groups G_i/G_{i+1} , $i=1, 2, \cdots, d$ -1, and thus yields numerical invariants. This result is applied in §4 to obtain a geometrical interpretation of the factor group G/G_3 of the group G of a link L; G/G_3 is completely determined by the number of components of L and the linking numbers of the different pairs of components. In §5 two examples are given. In one of them, it is shown that the torsion numbers of G_3/G_4 are sufficient to distinguish between a certain sequence of links, each of which has vanishing linking number for each pair of its three components. In the other example, it is shown that the torsion numbers of G_4/G_5 may be used to distinguish between another sequence of links of two components with vanishing linking number. However, for the group G of a knot, the factor group G/G_d is finite cyclic for every $d \ge 2$. The author is obliged for the valuable suggestions of R. H. Fox and R. C. Lyndon.
- 2. **Terminology and preliminary.** For any group G, denote by [a, b] the commutator $aba^{-1}b^{-1}$, $a, b \in G$, and by [A, B] the subgroup generated by all [a, b], $a \in A$, $b \in B$. Define inductively $[a_1] = a_1$, and for $d \ge 1$, $[a_1, a_2, \cdots, a_{d+1}] = [[a_1, a_2, \cdots, a_d], a_{d+1}]$, $a_i \in G$. Furthermore, set $G_1 = G$ and, for $d \ge 1$, $G_{d+1} = [G_d, G]$. The group G_d is called the dth lower central commutator subgroup of G and is the normal subgroup generated by all $[a_1, a_2, \cdots, a_d]$, $a_i \in G$.

Let M be a normal subgroup of G. Then we write $a \equiv b \mod M$ if and only if $ab^{-1} \in M$. Without ambiguity, we shall denote the cosets a_1M , a_2M , \cdots by a_1 , a_2 , \cdots mod M. For any homomorphism

Received by the editors April 22, 1951.

 $\phi: G \rightarrow G'$, $\phi(G_d) \subset G'_d$, and, consequently, $a \equiv b \mod G_d$ implies $\phi(a) \equiv \phi(b) \mod G'_d$.

It is known $[5]^1$ that $u \in G_s$, $v \in G_t$ implies $[u, v] \in G_{s+t}$. By repeated use of this fact together with the identities

(1)
$$[ab, c] = a[b, c]a^{-1}[a, c],$$

$$[c, ab] = [c, a]a[c, b]a^{-1},$$

we obtain the following lemma.

LEMMA 1. If $a, a' \in G_s$, $b, b' \in G_t$, $a \equiv a' \mod G_{s+1}$, and $b \equiv b' \mod G_{t+1}$, then

$$[a, b] \equiv [a', b'] \mod G_{s+t+1}$$

3. The main theorem.

MAIN THEOREM. Let G be a finitely presented group such that the abelianized group G/G_2 has a basis of n elements. Suppose that G is presented by n+k generators and k+q relations. (It is implied that $k \ge 0$ and $q \ge 0$.) Then, for each $d \ge 0$, there is a group $\mathfrak G$ presented by n generators and q relations such that

$$G/G_d \cong G/G_d$$
.

The case q=0 of this theorem has been proved by W. Magnus [6]. This section is devoted to a complete proof of this theorem, which will be restated later in a more constructive form (Theorem 1).

Let G have a presentation

$$G \cong \{\bar{a}_i, i = 1, 2, \cdots, n + k / \bar{r}_i, i = 1, 2, \cdots, k + q\},\$$

that is, G is obtained from the free group F generated by \bar{a}_i , $i=1, 2, \cdots, n+k$, by introducing relations $\bar{r}_i(\bar{a}_1, \cdots, \bar{a}_{n+k})$ $\equiv e, i=1, 2, \cdots, k+q$. The elements \bar{a}_i also represent a set of generators of the abelianized group G/G_2 , which has a basis of n elements. We apply to the array $\{\bar{a}_1, \cdots, \bar{a}_{n+k}\}$ the following operation:

- (A) \bar{a}_i and \bar{a}_j are interchanged,
- (B) \bar{a}_i is replaced by $\bar{a}_i^{\epsilon} \bar{a}_j^{m}$, $i \neq j$, $\epsilon = \pm 1$; and to the array $\{\bar{r}_1, \dots, \bar{r}_{k+q}\}$ the following operations:
 - (C) \bar{r}_i and \bar{r}_j are interchanged,
 - (D) \bar{r}_i is replaced by $\bar{r}_i^{\epsilon}\bar{r}_j^{m}$, $i \neq j$, $\epsilon = \pm 1$.

Under these operations $\bar{a}_1, \dots, \bar{a}_{n+k}$ and $\bar{r}_1, \dots, \bar{r}_{k+q}$ will continue to be generators and relations for G as well as for the abelian-

¹ Numbers in brackets refer to the bibliography at the end of the paper.

ized group G/G_2 . Let $r_i \equiv \prod_{j=1}^{n+k} a_j^{m_{ij}} \mod F_2$, $i=1, 2, \cdots, k+q$. To the operations (A), (B), (C), (D) there correspond elementary transformations on the matrix $||m_{ij}||$. From the classical theory of matrices, it follows that, after a finite number of operations (A), (B), (C), (D), the arrays $\{\bar{a}_1, \cdots, \bar{a}_{n+k}\}$ and $\{\bar{r}_1, \cdots, \bar{r}_{k+q}\}$ will become such that

- (i) $\bar{a}_1, \dots, \bar{a}_n$ form a basis of G/G_2 ,
- (ii) $\bar{r}_i \equiv x_i \bar{a}_{n+i}^{-1} \mod F_2$, $i=1, 2, \cdots, k, x_i$ being a word in $\bar{a}_1, \cdots, \bar{a}_n$ alone,
- (iii) $\bar{r}_{k+i} \equiv e \mod F_2$, $i = 1, 2, \dots, q$. Thus we are led to the following lemma.

LEMMA 2. Let G be defined as in the main theorem. Then G has a presentation $G \cong \{a_1, \dots, a_n; b_1, \dots, b_k / h_1, \dots, h_k; r_1, \dots, r_q\}$ such that the relations $h_i \equiv e$ and $r_i \equiv e$ are in the following forms:

- (i) $h_i = u_i x_i b_i^{-1}$, $u_i \in F_2$, $x_i \in \mathfrak{F}$,
- (ii) $r_1 \in F_2$,

where F denotes the free group generated by a_i , $i=1, 2, \dots, n$, and b_i , $i=1, 2, \dots, k$, and \mathfrak{F} denotes the free group generated by a_i , $i=1, 2, \dots, n$, alone.

We may assume hereafter in this section that G has its presentation as given in this lemma. Observe that a_1, \dots, a_n form a basis in the abelianized group G/G_2 . For simplicity, write the presentation of G as $G \cong \{a, b / h, r\}$. Let H be the normal subgroup generated by h_i , $i=1, 2, \dots, k$, and R the normal subgroup generated by r_i , $i=1, 2, \dots, q$. Then $G \cong F/H \cdot R$.

Denote by $\psi(w)$ the word obtained from w by replacing each b_i by u_ix_i , and $\phi(w)$ the word obtained from w by replacing each b_i by x_i , $i=1, 2, \cdots, k$. Then the substitution $\psi \colon F \to F$ is an endomorphism of F, and the substitution $\phi \colon F \to \mathfrak{F}$ is a homomorphism of F onto \mathfrak{F} . Both ψ and ϕ leave \mathfrak{F} elementwise fixed, and $\phi^2 = \psi \phi = \phi$. Moreover $h_i = \psi(b_i)b_i^{-1}$, and therefore $\psi(w) \equiv w \mod H$, $w \in F$. We observe that, in the presentation $G \cong \{a, b/h, r\}$, to replace r_i by $\psi(r_i)$ is a Tietze operation [8], and thus, by repeated use of ψ ,

(2)
$$G \cong \{a, b / h, \psi^{d-2}(r)\}, \qquad d \geq 2.$$

The notation $\psi^{d-2}(r)$ stands for the array $\psi^{d-2}(r_1)$, \cdots , $\psi^{d-2}(r_q)$, and obvious notations of abbreviation similar to this will be often used. It will be an important technique in this paper to use the substitution ψ as a Tietze operation on generators and relations of G.

LEMMA 3. If $w_t \in F_t$, then

$$\psi^d(w_t) \equiv \phi \psi^{d-1}(w_t) \bmod F_{d+t}, \qquad d \ge 1.$$

PROOF. For the generators a_i and b_i of F, we have $\psi(a_i) = a_i = \phi(a_i)$ and $\psi(b_i) = u_i x_i \equiv \phi(b_i) \mod F_2$. It is thus true that, for $w \in F$, $\psi(w) \equiv \phi(w) \mod F_2$. We prove the lemma for d=1 by induction on t. Assuming that the lemma holds for t-1, $t \geq 2$, it follows from Lemma 1 that $\psi([w_{t-1}, w]) = [\psi(w_{t-1}), \psi(w)] \equiv [\phi(w_{t-1}), \phi(w)] \mod F_{t+1}$ $\equiv \phi([w_{t-1}, w]) \mod F_{t+1}, w \in F, w_{t-1} \in F_{t-1}$. Since each element of F_t is a product of commutators of the form $[w_{t-1}, w]$, we conclude that, for $w_t \in F_t$, $\psi(w_t) \equiv \phi(w_t) \mod F_{t+1}$. The lemma now holds for d=1. Proceeding by induction on d, we assume that it holds for d-1 and any $t \geq 1$. Then $\psi^{d-1}(w_t) \equiv \phi \psi^{d-2}(w_t) \mod F_{d+t-1}$, that is, $\psi^{d-1}(w_t) [\phi \psi^{d-2}(w_t)]^{-1} \in F_{d+t-1}$. By the validity of the lemma for d=1, $\psi(\psi^{d-1}(w_t) [\phi \psi^{d-2}(w_t)]^{-1}) \equiv \phi(\psi^{d-1}(w_t) [\phi \psi^{d-2}(w_t)]^{-1}) \mod F_{d+t}$. Since $\psi \phi = \phi^2 = \phi$, we have $\psi^d(w_t) [\phi \psi^{d-2}(w_t)]^{-1} \equiv \phi \psi^{d-1}(w_t) [\phi \psi^{d-2}(w_t)]^{-1} \mod F_{d+t}$. Hence

$$\psi^d(w_t) \equiv \phi \psi^{d-1}(w_t) \bmod F_{d+t}.$$

THEOREM 1. Let a group G have a presentation as given in Lemma 2: $G \cong \{a, b/h, r\}$. Then the group $\mathfrak{G} \cong \{a/\phi \psi^{d-3}(r)\}$ has the property

REMARK. In the presentation of $\mathfrak{G} \cong \{a / \phi \psi^{d-3}(r)\}$, each r_i belongs to F_2 , $i=1, 2, \cdots, q$. If, for some i, r_i belongs to F_i , $2 \le t \le d-1$, then we may replace the corresponding $\phi \psi^{d-3}(r_i)$ by $\phi \psi^{d-1-t}(r_i)$ in the presentation of \mathfrak{G} .

PROOF OF THE THEOREM. It follows from Lemma 3 that $\psi^{d-2}(r_i) \equiv \phi \psi^{d-3}(r_i) \mod F_{d_i}$ and from (2) that

$$G/G_d \cong \{a, b / h, \psi^{d-2}(r), F_d\};$$

consequently,

$$G/G_d \cong \{a, b / h, \phi \psi^{d-3}(r), F_d\}.$$

Notice that each $\phi\psi^{d-3}(r_i)$ belongs to \mathfrak{F} . Let $h'_i = \phi\psi^{d-2}(b_i)b_i^{-1}$ and $h' = \{h'_1, h'_2, \dots, h'_k\}$. Since $\psi(w) \equiv w \mod H$, $w \in F$, we have $\psi^{d-1}(b_i) \equiv b_i \mod H$ and, using Lemma 3, $h'_i = \phi\psi^{d-2}(b_i)b_i^{-1} \equiv \psi^{d-1}(b_i)b_i^{-1} \mod F_d \equiv e \mod H \cdot F_d$. Therefore by Tietze operations we may introduce new relations $h'_i \equiv e$ into the presentation of G/G_d :

$$G/G_d \cong \{a, b / h, h', \phi \psi^{d-3}(r), F_d\}.$$

Now $\phi\psi^{d-2}$ is the substitution which replaces every b_i in a word by $\phi\psi^{d-2}(b_i)$, and, due to the definition of h', we may replace h by $\phi\psi^{d-2}(h)$ in this presentation of G/G_d :

$$G/G_d \cong \{a, b / \phi \psi^{d-2}(h), h', \phi \psi^{d-3}(r), F_d\}.$$

Observe that, due to Lemma 3, $\psi^{d-1}(b_i) \equiv \phi \psi^{d-2}(b_i) \mod F_d$, and $\phi \psi^{d-2}(h_i) = \phi \psi^{d-2}(\psi(b_i)b_i^{-1}) = \phi \left[\psi^{d-1}(b_i)\phi \psi^{d-2}(b_i)^{-1}\right] \equiv e \mod F_d$. Again, by Tietze operations,

$$G/G_d \cong \{a, b / h', \phi \psi^{d-3}(r), F_d\},$$

and, using $h_i' \equiv e$, that is, $b_i \equiv \phi \psi^{d-2}(b_i)$, as the defining relation of each b_i , we have

$$G/G_d \cong \{a / \phi \psi^{d-3}(r), \mathfrak{F}_d\}.$$

Let $\mathfrak{G} \cong \{a / \phi \psi^{d-3}(r)\}$. Then

$$\Im/\Im_d \cong \{a / \phi \psi^{d-3}(r), \Im_d\},$$

and hence the theorem is proved.

4. Application to link groups. A link is the union of n mutually disjoint, oriented, simple closed curves L_1, \dots, L_n in Euclidean 3-space E. L_i is called the *i*th component of L. If each L_i is a polygon, then L is said to be polygonal. The fundamental group G of the complement E-L is called the group of the link L.

Through the well known Wirtinger method [7], we may read off a presentation of the group G of a polygonal link L through its regular projection. Let $G \cong \{a_{ij} \mid r_{ij}\}$ $(i=1, 2, \dots, n; j=1, 2, \dots, k_i)$ be such a presentation, where to each crossing point Q_{ij} of the projection corresponds a relation $r_{ij} \equiv e$, $r_{ij} = b_{ij}a_{ij}b_{ij}^{-1}a_{ij+1}^{-1} = [b_{ij}, a_{ij}]a_{ij}a_{ij+1}^{-1}$ with $b_{ij} = a_{\alpha(i,j)\beta(i,j)}^{\epsilon_{ij}}$. $(\alpha(i, j) \text{ and } \beta(i, j) \text{ are given by the segment of } L$ which crosses over at Q_{ij} , and $\epsilon_{ij} = \pm 1$ is the signature of crossing.) $a_{i1}, a_{i2}, \dots, a_{ik_i}$ are the Wirtinger generators corresponding to the segments (in their natural order) of the component L_i . The index j on a_{ij}, b_{ij}, \dots , and so on, is to be taken modulo k_i .

Define $a_i = a_{i1}$, $v_{ij} = [b_{ij}, a_{ij}]$, $r_i = v_{ik_i}v_{ik_i-1} \cdots v_{i1}$, $u_{i1} = e$, i = 1, 2, \cdots , n, $j = 1, 2, \cdots$, k_i . Let $u_{ij} = v_{ij-1}v_{ij-2} \cdots v_{i1}$, $i = 1, 2, \cdots$, n; $j = 2, 3, \cdots$, k_i . Define $h_{ij} = u_{ij}a_ia_{ij}^{-1}$. It may be straightforwardly verified that

$$G \cong \{a_{ij} / h_{ij}, r_i\}, \qquad i = 1, 2, \dots, n; j = 1, 2, \dots, k_i.$$

Each r_i belongs to F_2 . Define $\mathfrak{G} \cong \{a_i / \phi \psi^{d-3}(r_i)\}, i=1, 2, \cdots, n$, where $d \geq 3$, $\psi(a_{ij}) = u_{ij}a_i$, and $\phi(a_{ij}) = a_i$. Then, due to Theorem 1, we have $G/G_d \cong \mathfrak{G}/\mathfrak{G}_d$.

In the case d=3, we have $\mathfrak{G}\cong\{a_i/\phi(r_i)\}$, $i=1, 2, \dots, n$. Let \mathfrak{F} be the free group generated by a_i , $i=1, 2, \dots, n$; then $\mathfrak{G}/\mathfrak{G}_3\cong\{a_i/\phi(r_i), \mathfrak{F}_3\}$. Define $r_i^*=\prod_{j=1, i\neq j}^{n}[a_j, a_i]^{\mu_{ij}}$, $i=1, 2, \dots, n$,

where μ_{ij} is the linking number of L_i and L_j . Then $\phi(r_i) = [\phi(b_{ik_i}), \phi(a_{ik_i})] \cdot \cdot \cdot [\phi(b_{i1}), \phi(a_{i1})] = [a^{\epsilon_i t_i}_{\alpha(i,k_i)}, a_i] \cdot \cdot \cdot [a^{\epsilon_i t_i}_{\alpha(i,1)}, a_i] \equiv r^*_i \mod \S_3$ and $\mathfrak{G}/\mathfrak{G}_3 \cong \{a_i / r^*_i, \S_3\}$. Thus we have shown the following theorem.

THEOREM 2. Let $L = L_1 \cup \cdots \cup L_n$ be a polygonal link, and G its group. Let μ_{ij} be the linking number of L_i and L_j , $i \neq j$. Define $\mathfrak{G}^* = \{a_i / r_i^*\}$, where $i = 1, 2, \cdots, n$, and $r_i^* = \prod_{j=1, j\neq i}^n [a_j, a_i]^{\mu_{ij}}$. Then $\mathfrak{G}^*/\mathfrak{G}_3^*$ is isomorphic with G/G_3 .

Fig. 1

COROLLARY 1. G/[G, G] is free abelian of rank n.

COROLLARY 2. $[G, G]/[[G, G], G](=G_2/G_3)$ is isomorphic with an additive group generated by x_{ij} , $i \neq j$, i, $j = 1, 2, \dots, n$, with relations

(a)
$$x_{ij} + x_{ji} = 0, i \neq j,$$
 $i, j = 1, 2, \dots, n,$

(b)
$$\sum_{j=1, \ i\neq j}^{n} \mu_{ij} x_{ij} = 0, \qquad i = 1, 2, \cdots, n.$$

Proof. Let \Re^* be the normal subgroup generated by all r_i^* ,

 $i=1, 2, \dots, n$, in \mathfrak{F} . We have $\mathfrak{R}^* \subset \mathfrak{F}_2$. It is straightforward that

$$G_2/G_3 \cong \mathfrak{G}_2^*/\mathfrak{G}_3^* \cong \mathfrak{F}_2/\mathfrak{R}^* \cdot \mathfrak{F}_3 \cong (\mathfrak{F}_2/\mathfrak{F}_3)/(\mathfrak{R}^* \cdot \mathfrak{F}_3/\mathfrak{F}_3).$$

 $\mathfrak{F}_2/\mathfrak{F}_3$ is a free abelian group having as a basis the elements $[a_i, a_j]$ mod $\mathfrak{F}_3, i > j, i, j = 1, 2, \cdots, n$. $\mathfrak{R}^* \cdot \mathfrak{F}_3/\mathfrak{F}_3$ is a subgroup of $\mathfrak{F}_2/\mathfrak{F}_3$ and is generated by elements $\prod_{j=1,j\neq i}^n [a_j, a_i]^{\mu_{ij}} \mod \mathfrak{F}_3$. Write the group $\mathfrak{F}_2/\mathfrak{F}_3$ additively, and replace $[a_j, a_i] \mod \mathfrak{F}_3$ by x_{ij} . Thus the corollary follows immediately.

COROLLARY 3. If $L = L_1 \cup L_2$, then [G, G]/[[G, G], G] is cyclic of order $|\mu_{12}|$.

K. Reidemeister [7, p. 45] remarked that, for $L = L_1 \cup L_2$, $[a_1, a_2]$, taken as an element of G/G_3 , is of order $|\mu_{12}|$. This result may be regarded as a corollary of Theorem 2.

5. **Examples.** Let $L = L_1 \cup L_2 \cup L_3$ be a link as given in Fig. 1, and G its group. The link L has three components, each pair of which has vanishing linking number. We shall therefore overlook the factor group G_2/G_3 , which does not yield interesting invariants. In order to compute G_3/G_4 , let F be the free group generated by a_{ij} , i=1, 2, 3; $j=1, 2, \cdots, k_i, k_1=k_2=2m, k_3=4m$. Write, for $j=1, 2, \cdots, m$,

$$\begin{array}{lll} b_{1\;2j-1} = \; a_{3\;4j-3}, & b_{1\;2j} = \; a_{3\;4j}^{-1}; \\ b_{2\;2j-1} = \; a_{3\;4j-4}^{-1}, & b_{2\;2j} = \; a_{3\;4j-1}; \\ b_{3\;4j-3} = \; a_{1\;2j}, & \cdot \; b_{3\;4j-2} = \; a_{2\;2j}; \\ b_{3\;4j-1} = \; a_{1\;2j}^{-1}, & b_{3\;4j} = \; a_{2\;2j+2}^{-1}. \end{array}$$

Write $v_{ij} = [b_{ij}, a_{ij}]$ and $r_{ij} = v_{ij}a_{ij}a_{i}^{-1}{}_{j+1}$. Then G is presented by generators a_{ij} and relations r_{ij} , i = 1, 2, 3; $j = 1, 2, \dots, k_i$. Define $a_i = a_{ii}$; $u_{i1} = e$, $u_{ij} = v_{i-j-1} v_{i-j-2} \cdots v_{i1}$, $j \neq 1$; $h_{ij} = u_{ij}a_{i}a_{ij}^{-1}$; $r_i = v_{i-k_i} v_{i-k_i-1} \cdots v_{i1}$. As given in the preceding section, G may be presented by generators a_{ij} and relations h_{ij} and r_i , i = 1, 2, 3; $j = 1, 2, \dots, k_i$. Let $\mathfrak{G} \cong \{a_1, a_2, a_3 / \phi \psi(r_1), \phi \psi(r_2), \phi \psi(r_3)\}$. Then $G/G_4 \cong \mathfrak{G}/\mathfrak{G}_4 \cong \mathfrak{G}/\mathfrak{G}_4$, which implies $G_3/G_4 \cong \mathfrak{G}_3/\mathfrak{G}_4$.

As before, \mathfrak{F} denotes the free group generated by a_1 , a_2 , a_3 . The following congruence identities may be verified straightforwardly: For any u, u', v, $w \in \mathfrak{F}$,

$$[uu', v, w] \equiv [u, v, w][u', v, w] \mod \mathfrak{F}_4,$$

$$[u^{-1}, v, w] \equiv [u, v, w]^{-1} \mod \mathfrak{F}_4,$$

$$[u^{-1}, v] \equiv [v, u, u][u, v]^{-1} \mod \mathfrak{F}_4.$$

First we have

$$\phi\psi(a_{1\ 2i-1}) \equiv a_1 \bmod \mathfrak{F}_3,
\phi\psi(a_{1\ 2i}) \equiv [a_3,\ a_1]a_1 \bmod \mathfrak{F}_3,
\phi\psi(a_{2\ 2i-1}) \equiv a_2 \bmod \mathfrak{F}_3,
\phi\psi(a_{2\ 2i}) \equiv [a_3,\ a_2]^{-1}a_2 \bmod \mathfrak{F}_3,
\phi\psi(a_{3\ 4i-3}) \equiv a_3 \bmod \mathfrak{F}_3,
\phi\psi(a_3\ 4i-2) \equiv [a_1,\ a_3]a_3 \bmod \mathfrak{F}_3,
\phi\psi(a_3\ 4i-1) \equiv [a_2,\ a_3][a_1,\ a_3]a_3 \bmod \mathfrak{F}_3,
\phi\psi(a_3\ 4i) \equiv [a_2,\ a_3]a_3 \bmod \mathfrak{F}_3.$$

Using the above identities, we have

$$\phi\psi(v_{1\ 2i-1}) = \left[\phi(a_{3\ 4i-3}), \phi(a_{1\ 2i-1})\right] \equiv \left[a_{3}, a_{1}\right] \operatorname{mod} \mathfrak{F}_{4}, \\
\phi\psi(v_{1\ 2i}) = \left[\phi(a_{3\ 4i}^{-1}), \phi(a_{1\ 2i})\right] \\
\equiv \left[(\left[a_{2}, a_{3}\right]a_{3}\right)^{-1}, \left[a_{3}, a_{1}\right]a_{1}\right] \operatorname{mod} \mathfrak{F}_{4}, \\
\equiv \left[a_{2}, a_{3}, a_{1}\right]^{-1}\left[a_{3}, a_{1}\right]^{-1} \operatorname{mod} \mathfrak{F}_{4}, \\
\phi\psi(v_{2\ 2i-1}) \equiv \left[a_{2}, a_{3}, a_{3}\right]\left[a_{2}, a_{3}, a_{2}\right]^{-1}\left[a_{3}, a_{2}\right]^{-1} \operatorname{mod} \mathfrak{F}_{4}, \\
\phi\psi(v_{2\ 2i}) \equiv \left[a_{2}, a_{3}, a_{2}\right]\left[a_{1}, a_{3}, a_{2}\right]\left[a_{3}, a_{2}, a_{3}\right]\left[a_{3}, a_{2}\right] \operatorname{mod} \mathfrak{F}_{4}, \\
\phi\psi(v_{3\ 4i-3}) \equiv \left[a_{3}, a_{1}, a_{3}\right]\left[a_{1}, a_{3}\right] \operatorname{mod} \mathfrak{F}_{4}, \\
\phi\psi(v_{3\ 4i-1}) \equiv \left[a_{3}, a_{1}, a_{3}\right]^{-1}\left[a_{2}, a_{3}, a_{1}\right]\left[a_{1}, a_{3}\right]^{-1} \operatorname{mod} \mathfrak{F}_{4}, \\
\phi\psi(v_{3\ 4i}) \equiv \left[a_{3}, a_{2}, a_{3}\right]\left[a_{2}, a_{3}\right]^{-1} \operatorname{mod} \mathfrak{F}_{4}, \\
\text{for } j=1, 2, \cdots, m. \text{ It follows that} \\
\phi\psi(r_{1}) \equiv (\phi\psi(v_{1\ 2i}v_{1\ 2i-1}))^{m} \operatorname{mod} \mathfrak{F}_{4}, \\
\phi\psi(r_{2}) \equiv (\phi\psi(v_{2\ 2i}v_{2\ 2i-1}))^{m} \operatorname{mod} \mathfrak{F}_{4}, \\
\equiv \left[a_{2}, a_{3}, a_{1}\right]^{m} \operatorname{mod} \mathfrak{F}_{4}, \\
\equiv \left[a_{2}, a_{3}, a_{1}\right]^{m} \operatorname{mod} \mathfrak{F}_{4},$$

and

$$\phi\psi(r_3) \equiv (\phi\psi(v_2 \,_{4j}v_3 \,_{4j-1}v_3 \,_{4j-2}v_3 \,_{4j-3}))^m \bmod \mathfrak{F}_4$$

$$\equiv [a_2, a_3, a_1]^m[a_1, a_3, a_2]^{-m} \bmod \mathfrak{F}_4$$

$$\equiv (\phi\psi(r_1))^{-1}(\phi\psi(r_2))^{-1} \bmod \mathfrak{F}_4.$$
Now $\mathfrak{G}\cong \{a_1, a_2, a_3 / \phi\psi(r_1), \phi\psi(r_2), \phi\psi(r_3)\}, \text{ and}$

$$\mathfrak{G}/\mathfrak{G}_4\cong \{a_1, a_2, a_3 / \phi\psi(r_1), \phi\psi(r_2), \phi\psi(r_3), \mathfrak{F}_4\}.$$

Thus, by Tietze operations,

 $\mathfrak{G}/\mathfrak{G}_4 \cong \{a_1, a_2, a_3 / [a_2, a_3, a_1]^m, [a_1, a_3, a_2]^m, \mathfrak{F}_d\}.$

Define $\mathfrak{G}^* \cong \{a_1, a_2, a_3 / [a_2, a_3, a_1]^m, [a_1, a_3, a_2]^m\}$. Let \mathfrak{R}^* be the normal

subgroup generated by $[a_2, a_3, a_1]^m$ and $[a_1, a_3, a_2]^m$ in \mathfrak{F} . Then $\mathfrak{G}_3/\mathfrak{G}_4$ $\equiv \mathfrak{F}_3/\mathfrak{R}^* \cdot \mathfrak{F}_4 \equiv (\mathfrak{F}_3/\mathfrak{F}_4)/(\mathfrak{R}^* \cdot \mathfrak{F}_4/\mathfrak{F}_4)$. The group $\mathfrak{F}_3/\mathfrak{F}_4$ is free abelian of rank 8 [2; 4; 9]. We may choose as a basis for $\mathfrak{F}_3/\mathfrak{F}_4$ the elements $[a_1, a_2, a_1]$, $[a_1, a_2, a_2]$, $[a_1, a_2, a_3]$, $[a_1, a_3, a_1]$, $[a_1, a_3, a_2]$, $[a_1, a_3, a_3]$ mod \mathfrak{F}_4 . The group $\mathfrak{R}^* \cdot \mathfrak{F}_4/\mathfrak{F}_4$ is free abelian with $[a_2, a_3, a_1]^m$, $[a_1, a_3, a_2]^m$ mod \mathfrak{F}_4 as basis. Hence G_3/G_4 is isomorphic to a direct product $J_m \times J_m \times B_6$ where J_m is a cyclic group of order m, and B_6 is a free abelian group of rank 6.

Consider another link $L = L_1 \cup L_2$ (Fig. 2) which has a vanishing

linking number. In order to avoid the extensive use of double indices, we write the group G of L in the presentation:

$$G \cong \{x_1, x_2, \cdots, x_{2m}, y_1, y_2 / r_1, r_2, \cdots, r_{2m}, s_1, s_2\}$$

where

$$r_{i} = \begin{bmatrix} x_{2m-i}, & x_{i} \end{bmatrix} x_{i} x_{i+1}^{-1}, \qquad i \neq m, 2m,$$

$$r_{m} = \begin{bmatrix} y_{1}, & x_{m} \end{bmatrix} x_{m} x_{m+1}^{-1},$$

$$r_{2m} = \begin{bmatrix} y_{1}^{-1}, & x_{2m} \end{bmatrix} x_{2m} x_{1}^{-1},$$

$$s_{1} = \begin{bmatrix} x_{2m}, & y_{1} \end{bmatrix} y_{1} y_{2}^{-1},$$

$$s_{2} = \begin{bmatrix} x_{m+1}, & y_{2} \end{bmatrix} y_{2} y_{1}^{-1}.$$

Let F be the free group generated by $x_1, x_2, \dots, x_{2m}, y_1, y_2$, and denote $x = x_1, y = y_1, r = [y_1^{-1}, x_{2m}](\prod_{i=1}^{m-1} [x_i, x_{2m-i}])$ $[y_1, x_m] \cdot (\prod_{i=m+1}^{2m-1} [x_i, x_{2m-i}]), s = [x_{m+1}, y_2][x_{2m}^{-1}, y_1]$. Define the substitutions ψ and ϕ such that $\psi(x_1) = x, \psi(x_{i+1}) = r_i x_{i+1} x_i^{-1} \psi(x_i), i = 1, 2, \dots, 2m-1, \psi(y_1) = y, \psi(y_2) = [x_{2m}^{-1}, y]y, \phi(x_i) = x, \phi(y_i) = y$. Then, according to Theorem 1,

$$G/G_5 \cong \{x, y / \phi \psi^2(r), \phi \psi^2(s), \mathfrak{F}_5\}$$

where \mathfrak{F} is the free group generated by x and y. We are going to show that $\phi\psi^2(r) \equiv [x, y, x, y]^{m-1} \mod \mathfrak{F}_6$ and $\phi\psi^2(s) \equiv [x, y, x, y]^{-m+1} \mod \mathfrak{F}_6$, which will imply that

$$G/G_5 \cong \{x, y / [x, y, x, y]^{m-1}, \mathfrak{F}_5\}.$$

From $[u, av] = [u, a]a[u, v]a^{-1}$ it follows that, if $u \in \mathfrak{F}_s$, $v \in \mathfrak{F}_t$, $a \in \mathfrak{F}_q$, then $[u, av] \equiv [u, a][u, v]$ mod \mathfrak{F}_{s+t+q} . The above congruence identity will be used frequently in this example.

It is immediate that $x = \phi \psi(x_1) = \phi \psi(x_2) = \cdots = \phi \psi(x_m)$ and $[y, x]x = \phi \psi(x_{m+1}) = \cdots = \phi \psi(x_{2m})$. It follows that, for $i = 1, 2, \cdots, m-1$,

$$\phi\psi([x_{2m-i}, x_i]) \equiv [[y, x]x, x] \equiv [y, x, x] \mod \mathfrak{F}_4,$$

and, for $i = m+1, \dots, 2m-1$,

$$\phi\psi([x_{2m-i}, x_i]) \equiv [y, x, x]^{-1} \bmod \mathfrak{F}_4.$$

By the definition of ψ ,

$$\psi(x_m) = \left(\prod_{i=1}^{m-1} \left[x_{m+i}, x_{m-i}\right]\right) x$$

and

$$\psi(x_{2m}) = \left(\prod_{i=1}^{m-1} [x_i, x_{2m-i}]\right) [y, x_m] \psi(x_m).$$

Thus we have

$$\phi \psi^2(x_m) \equiv [y, x, x]^{m-1} x \bmod \mathfrak{F}_4$$

and

$$\phi \psi^{2}(x_{2m}) \equiv [y, x, x]^{-m+1}[y, \phi \psi(x_{m})][y, x, x]^{m-1}x \equiv [y, x]x \mod \mathfrak{F}_{4}.$$

Since $\psi([x_{2m-i}, x_{i}]) \in F_{3}$ and $\psi([y_{1}, x_{m}]) \in F_{2}$,

$$\psi(r) \equiv \psi([y_1^{-1}, x_{2m}]) \left(\prod_{i=1}^{m-1} [x_i, x_{2m-i}] \right) \psi([y_1, x_m]) \psi\left(\prod_{i=1}^{m-1} [x_i, x_{2m-i}] \right)^{-1}$$

$$\equiv \psi([y^{-1}, x_{2m}]) \psi([y, x_m]) \bmod F_5.$$

Consequently

$$\phi\psi^{2}(r) \equiv [y^{-1}, \, \phi\psi^{2}(x_{2m})][y, \, \phi\psi^{2}(x_{m})]
\equiv [y^{-1}, \, [y, \, x]x][y, \, [y, \, x, \, x]^{m-1}x]
\equiv [x, \, y][x, \, y, \, x, \, y]^{m-1}[y, \, x] \equiv [x, \, y, \, x, \, y]^{m-1} \mod \mathfrak{F}_{5}.$$

On the other hand, $\psi(y_2) = [x_{2m}^{-1}, y]y$, $\phi\psi^2(y_2) = [\phi\psi(x_{2m}^{-1}), y]y \equiv [z^{-1}, y]y$ mod \mathfrak{F}_4 , where z = [y, x]x. Moreover $\psi(x_{m+1}) = [y, x_m]\psi(x_m)$, and $\phi\psi^2(x_{m+1}) = [y, \phi\psi(x_m)]\phi\psi^2(x_m) \equiv [y, x][y, x, x]^{m-1}x \equiv [y, x, x]^{m-1}z$ mod \mathfrak{F}_4 . Thus

$$\phi\psi^{2}(s) \equiv [[y, x, x]^{m-1}z, [z^{-1}, y]y][z^{-1}, y]
\equiv [[y, x, x]^{m-1}, y][z, [z^{-1}, y]y][z^{-1}, y]
\equiv [y, x, x, y]^{m-1}[y, z^{-1}][z^{-1}, y]
\equiv [x, y, x, y]^{-m+1} \mod \mathfrak{F}_{5}.$$

Therefore $G/G_5\cong\{x,y/[x,y,x,y]^{m-1},\mathfrak{F}_5\}$. The factor group $\mathfrak{F}_4/\mathfrak{F}_5$ is a free abelian group of rank 3. As its basis, we may choose [x,y,x,x], [x,y,x,y], [x,y,y,y] mod \mathfrak{F}_5 [4]. The factor group G_4/G_5 is hence abelian and isomorphic with a direct product $J_{m-1}\times B_2$ where J_{m-1} is the cyclic group of order m-1, and B_2 is a free abelian group of rank 2, and the integer m-1 is a numerical invariant of the link.

BIBLIOGRAPHY

- 1. R. Baer, The higher commutator subgroups of a group, Bull. Amer. Math. Soc. vol. 50 (1944) pp. 143-160.
 - 2. K. T. Chen, Integration in free groups, Ann. of Math. vol. 54 (1951) pp. 147-162.
 - 3. R. H. Fox, Free differentiation, forthcoming.

- 4. M. Hall, A basis for free Lie ring and higher commutators in free groups, Proceedings of the American Mathematical Society vol. 1 (1950) pp. 575-581.
- 5. W. Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann. vol. 111 (1935) pp. 259-280.
- 6. Über freie Faktorgruppen und freie Untergruppen gegebener Gruppen, Monatshefte für Mathematik und Physik vol. 47 (1939) pp. 307-313.
 - 7. K. Reidemeister, Knotentheorie, Berlin, Springer, 1932.
- 8. ——, Einführung in die kombinatorische Topologie, Braunschweig, Vieweg, 1932, pp. 46-49.
- 9. W. Witt, Treue Darstellung der Lieschen Ringe, J. Reine Angew. Math. vol. 177 (1937) pp. 152-160.

PRINCETON UNIVERSITY