A BOUNDARY VALUE PROBLEM FOR A NONLINEAR DIFFERENTIAL EQUATION WITH A SMALL PARAMETER

EARL A. CODDINGTON AND NORMAN LEVINSON

It is the purpose of this paper to prove Theorems 1 and 2 below which relate the existence, uniqueness, and general behavior of the solution, $y(x, \epsilon)$, for small $\epsilon > 0$, of the two-point boundary value problem

$$\epsilon y'' + f(x, y)y' + g(x, y) = 0,$$

 $y(0) = y_0, \quad y(1) = y_1,$

with the solution u(x) of the corresponding "degenerate" initial value problem

$$f(x, u)u' + g(x, u) = 0,$$
 $u(1) = y_1.$

THEOREM 1 (Existence). Let $(0, y_0)$, $(1, y_1)$ be two points in the real (x, y)-plane, and assume:

(i) f(x, y), g(x, y) are real functions such that the differential equation

(1)
$$f(x, u)u' + g(x, u) = 0$$

has a solution u(x) on $0 \le x \le 1$, with $u(1) = y_1$ and $u(0) = u_0 \ge y_0$.

(ii) f(x, y), g(x, y) are of class C' in a region

R:
$$0 \le x \le 1$$
, $|y - u(x)| \le a$, $a > 0$,

which includes the point $(0, y_0)$.

(iii) There exists a constant k>0 such that $f(x, y) \ge k$ for (x, y) in R. Then, for all sufficiently small $\epsilon>0$, there exists in R a solution $y(x) = y(x, \epsilon)$ of

(2)
$$\epsilon y'' + f(x, y)y' + g(x, y) = 0$$

satisfying the boundary conditions

$$y(0) = y_0, y(1) = y_1.$$

Further, $y(x, \epsilon) \rightarrow u(x)$, $y'(x, \epsilon) \rightarrow u'(x)$, as $\epsilon \rightarrow 0$, uniformly on any sub-interval $0 < \delta \le x \le 1$.

REMARKS. From the proof of Theorem 1 it will be seen that the

Presented to the Society, October 27, 1951; received by the editors March 28, 1951.

result of the theorem is valid if the hypotheses (ii) and (iii) are replaced by the somewhat weaker assumptions

(ii) * f(x, y), g(x, y) are of class C' in a region

$$R^*: \begin{array}{ll} 0 \leq x \leq \alpha < 1, & y_0 - \beta \leq y \leq u_0 + \beta & (\alpha, \beta > 0), \\ \alpha \leq x \leq 1, & |y - u(x)| \leq \gamma & (\gamma > 0); \end{array}$$

(iii)* there exists a constant k>0 such that $f(x, u(x)) \ge k$, $0 \le x \le 1$, and

$$\int_{u}^{u_0} f(0, y) dy > 0, \qquad y_0 \leq y < u_0;$$

and if R is replaced by R^* .

The assumption in (i) that $u_0 \ge y_0$ is no restriction for if $u_0 < y_0$, then the change $y^* = -y$, $u^* = -u$ gives two equations (1)* and (2)* of the same type as (1) and (2) but with $u_0^* > y_0^*$. Also, by a change of variable of the type $x^* = px + q$, the interval $0 \le x \le 1$ can be replaced by an arbitrary bounded interval. It is further clear that if $\epsilon < 0$, a similar theorem will hold with the role of the left and right boundaries, x = 0 and x = 1, interchanged.

Assuming the existence of both u(x) and $y(x, \epsilon)$, R. v. Mises $[2]^1$ proved recently that as $\epsilon \to +0$, $y(x, \epsilon) \to u(x)$ and $y'(x, \epsilon) \to u'(x)$ uniformly on every subinterval $0 < \delta \le x \le 1$. He assumed that f(x, y), g(x, y) were continuous on a rectangle containing $(0, y_0)$ and (x, u(x)), and f > 0 there.

THEOREM 2 (Uniqueness). Under the assumptions (i), (ii), (iii) of Theorem 1, for sufficiently small $\epsilon > 0$, there exists at most one solution $y(x, \epsilon)$ of (2) in R_0 satisfying the boundary conditions $y(0) = y_0$, $y(1) = y_1$. The region R_0 satisfies the same inequalities as R but with a replaced by a smaller quantity.

REMARK. If (ii) and (iii) are replaced by (ii)* and (iii)* the result of Theorem 2 is valid in R_0^* where R_0^* satisfies the same inequalities as R^* but with β and γ replaced by smaller quantities.

PROOF OF THEOREM 1. If $y_0 < u_0$, let $y_0' > 0$. By virtue of (ii) there exists, on a sufficiently small interval to the right of x = 0, a solution of (2), $y(x) = y(x, \epsilon) = y(x, \epsilon; y_0, y_0')$, for which $y(0, \epsilon) = y_0$, $y'(0, \epsilon) = y_0'$, and such that $y(x, \epsilon)$ remains inside R. Put

(3)
$$\epsilon y_0' = \int_{y_0}^{y_0} f(0, y) dy + \mu,$$

¹ Numbers in brackets refer to the references cited at the end of the paper.

where ϵ is such that $\epsilon^{1/2}$ is less than the integral in (3), and μ is a real parameter whose magnitude is so small that $\epsilon y_0' > \epsilon^{1/2} > 0$. It will be shown that given any δ_1 , $0 < \delta_1 < a$, then for small enough ϵ and μ there exists a $\xi > 0$ such that

$$\epsilon y'(\xi) = \epsilon^{1/2}$$

and if $y(\xi) = \eta$,

(5)
$$0 < \xi \leq (u_0 + \delta_1 - y_0)\epsilon^{1/2}, \quad |\eta - u_0| < \delta_1.$$

For small enough ϵ , and for $\mu > 0$, it will be the case that $\eta > u_0$, while for $\mu < 0$, $\eta < u_0$. In fact there exists a $\sigma > 0$ (independent of ϵ) such that for $\mu > 0$, $\eta - u_0 > \mu \sigma + O(\epsilon^{1/2})$ and for $\mu < 0$, $u_0 - \eta > -\mu \sigma + O(\epsilon^{1/2})$.

In order to prove these facts, let $y'(x) = e^{-1/2}$ for the first time at $x = \xi_1$, and $y(x) = u_0 + \delta_1$ for the first time at $x = \xi_2$, and define ξ = min (ξ_1, ξ_2) . For small ϵ either ξ_1 or ξ_2 must exist and thus ξ exists. From the definition of ξ , and the mean value theorem for y(x), it follows that $0 < \xi \le (u_0 + \delta_1 - y_0)e^{1/2}$. Integrating (2) from x = 0 to $x = \xi$, and using (3), we have if $\eta = y(\xi)$

$$\epsilon y'(\xi) = \int_{\eta}^{u_0} f(0, y) dy + \mu + \int_{0}^{\xi} [f(0, y(x)) - f(x, y(x))] y'(x) dx - \int_{0}^{\xi} g(x, y(x)) dx.$$

From (ii) it follows that the last two terms are $O(\epsilon^{1/2})$, as $\epsilon \rightarrow 0$, and hence the above may be written as²

(6)
$$\epsilon y'(\xi) = \int_{a}^{u_0} f(0, y) dy + \mu + O(\epsilon^{1/2}).$$

For fixed $\delta_1 > 0$ and $|\mu|$ and ϵ small it follows from (6), since $y'(\xi) > 0$ and $f(0, u_0) > 0$, that $\eta = u_0 + \delta_1$ is impossible. Thus in fact $\xi = \xi_1$ and (4) follows. From (6) follows

Moreover (7) implies that if $|\mu|$ and ϵ are sufficiently small, $|\eta - u_0| < \delta_1$. This proves (5). The statements following (5) follow easily from (7) if $\sigma f(0, u_0) = 1/2$.

If $y_0 = u_0$, (3) becomes $\epsilon y_0' = \mu$, and if $\mu > \epsilon^{1/2} > 0$, define ξ_1 , ξ_2 , and

² In the following all O terms refer to $\epsilon \rightarrow 0$.

 ξ as before. Then $0 < \xi \le \delta_1 \epsilon^{1/2}$, and (6) follows as before. If $\mu < -\epsilon^{1/2} < 0$, define $x = \xi_1$ to be the first point such that $y'(x) = -\epsilon^{-1/2}$, and define $x = \xi_2$ to be the first point for which $y(x) = u_0 - \delta_1$. If $\xi = \min(\xi_1, \xi_2)$ in this case, then $0 < \xi \le \delta_1 \epsilon^{1/2}$, and again (6) follows. The remainder of the proof of (4), (5), and the remarks following (5) is the same as for the case $y_0 < u_0$.

Denote by $u(x; \xi, \eta)$ that solution of (1) for which $u(\xi; \xi, \eta) = \eta$. This solution will exist on $0 \le x \le 1$ if ϵ and δ_1 are small enough since the given solution u(x) is a continuous function of its initial point. Choose ϵ and δ_1 so small that this will be true. Then $u(x; \xi, \eta) \rightarrow u(x)$ uniformly on $0 \le x \le 1$ as $(\xi, \eta) \rightarrow (0, u_0)$.

It will now be shown that as far to the right of ξ as $y(x, \epsilon)$, $y'(x, \epsilon)$ exist

(8)
$$|y(x,\epsilon) - u(x;\xi,\eta)| = O(\epsilon^{1/2}), \qquad \xi \le x \le 1,$$

$$(9) |v'(x,\epsilon) - u'(x;\xi,\eta)| = O(\epsilon), \xi + \epsilon^{1/2} \le x \le 1.$$

By a familiar continuation argument, this will then prove the existence of $y(x, \epsilon)$ on $0 \le x \le 1$.

In order to prove (8), let $z(x) = z(x, \epsilon; \xi, \eta) = y(x, \epsilon) - u(x; \xi, \eta)$. From (1) and (2), if $\xi \le x \le 1$, and $y(x, \epsilon)$ exists and is in R (if x is near enough to ξ , $y(x, \epsilon)$ certainly exists), then

(10)
$$\epsilon z'' + f(x, y)z' = r,$$

where

$$\mathbf{r} = \left[g(x, u) - g(x, y) \right] + \left[f(x, u) - f(x, y) \right] u'$$

$$+ \epsilon f^{-2}(x, u) \left[f(x, u) \frac{\partial g}{\partial x}(x, u) - g(x, u) \frac{\partial f}{\partial x}(x, u) \right]$$

$$+ \epsilon f^{-3}(x, u) \left[\frac{\partial f}{\partial u}(x, u) g^{2}(x, u) - \frac{\partial g}{\partial u}(x, u) g(x, u) f(x, u) \right].$$

Because of the assumptions (ii), (iii), and the mean value theorem, it follows that there exists a constant c>0 such that

$$|r| \leq c[|z| + \epsilon].$$

Integrating (10) we obtain

(12)
$$z'(x) = z'(\xi) \exp\left[-\frac{1}{\epsilon} \int_{\xi}^{x} f(t, y(t)) dt\right] + \frac{1}{\epsilon} \int_{\xi}^{x} r \exp\left[-\frac{1}{\epsilon} \int_{\xi}^{x} f(t, y(t)) dt\right] ds.$$

Since $y'(\xi, \epsilon) = \epsilon^{-1/2}$, $|z'(\xi)| \le 2\epsilon^{-1/2}$ if ϵ is sufficiently small, and if this is combined with the fact that $f(x, y) \ge k$, then (12) gives

(13)
$$|z'(x)| \leq 2\epsilon^{-1/2} \exp\left[-\frac{k}{\epsilon}(x-\xi)\right] + \frac{c\epsilon}{k} + \frac{c}{\epsilon} \int_{\xi}^{x} |z(s)| \exp\left[-\frac{k}{\epsilon}(x-s)\right] ds.$$

Integrating the inequality (13) yields the following estimate for |z(x)| (note that $z(\xi) = 0$),

$$|z(x)| \le \frac{2\epsilon^{1/2}}{k} + \frac{c\epsilon}{k} + \frac{c}{k} + \frac{c}{\epsilon} \int_{\epsilon}^{x} \left(\int_{\epsilon}^{t} |z(s)| \exp\left[-\frac{k}{\epsilon} (t-s)\right] ds \right) dt,$$

and by an interchange of the order of integration in the last term we obtain

$$|z(x)| \le \frac{2\epsilon^{1/2}}{k} + \frac{c\epsilon}{k} + \frac{c}{k} \int_{\epsilon}^{x} |z(s)| ds.$$

If ϵ is small enough, $c\epsilon < \epsilon^{1/2}$, and hence

$$\left| z(x) \right| \leq \frac{3\epsilon^{1/2}}{k} + \frac{c}{k} \int_{\epsilon}^{x} \left| z(s) \right| ds.$$

It follows easily from this that

$$\int_{\xi}^{x} |z(s)| ds \leq \frac{3\epsilon^{1/2}}{c} \left[\exp\left(\frac{c}{k}(x-\xi)\right) - 1 \right], \quad \xi \leq x \leq 1,$$

and therefore

$$\left| z(x) \right| \le \frac{3\epsilon^{1/2}}{k} \exp\left(\frac{c}{k}(x-\xi)\right), \qquad \xi \le x \le 1.$$

This proves the estimate (8). Formula (9) follows directly from (8) and (13).

It still remains to show that y_0' can be chosen so that $y(1, \epsilon) = y_1$. From the remark after (5), if $\mu < 0$ and ϵ is small enough then $u_0 - \eta > -\mu\sigma/2$. Hence by the continuity of $u(x; \xi, \eta)$ in ξ and uniqueness, $u(x; \xi, \eta) < u(x)$, and on account of (8), $y(x, \epsilon) < u(x)$ on $\xi \le x \le 1$ if ϵ is sufficiently small. In particular $y(1, \epsilon) < y_1$. Similarly, for $\mu > 0$, and ϵ small enough, $y(1, \epsilon) > y_1$. Since $y(x, \epsilon)$ is in R for $0 \le x \le 1$

for small ϵ and μ , $y(x, \epsilon)$ is continuous in μ . By the continuity of $y(1, \epsilon)$ with respect to μ it follows that for ϵ sufficiently small, and some μ , $y(1, \epsilon) = y_1$. This, with (8) and (9), completes the proof of the existence theorem for the boundary value problem.

PROOF OF THEOREM 2. It will be shown that the solution $y(x, \epsilon) = y(x, \epsilon; y_0, y_0')$ considered as a function of y_0' satisfies

(14)
$$\frac{\partial y}{\partial y_0'}(1, \epsilon; y_0, y_0') > 0,$$

for ϵ sufficiently small. This clearly implies the uniqueness of $y(x, \epsilon)$ satisfying (2) and $y(0, \epsilon) = y_0$, $y(1, \epsilon) = y_1$.

Let

$$w(x) = w(x, \epsilon; y_0, y_0') = \frac{\partial y}{\partial y_0'}(x, \epsilon; y_0, y_0').$$

For fixed ϵ , w(x), w'(x), w''(x) exist for $0 \le x \le 1$, and from (2)

(15)
$$\epsilon w'' + fw' + \left(\frac{\partial f}{\partial y}y' + \frac{\partial g}{\partial y}\right)w = 0.$$

It is clear that

$$(16) w(0) = 0, w'(0) = 1.$$

In order to prove (14) we first obtain appraisals for w(x), w'(x) near x=0. If (15) is integrated, the initial values (16) being used, then this yields

(17)
$$\epsilon w' + fw = \epsilon + \int_0^x \left(\frac{\partial f}{\partial x} - \frac{\partial g}{\partial y}\right) w dt.$$

Another integration results in the following expression for w(x):

(18)
$$w(x) = \int_0^x E(s, x; \epsilon) ds + \frac{1}{\epsilon} \int_0^x \left(\frac{\partial f}{\partial x} - \frac{\partial g}{\partial y} \right) w \left[\int_r^x E(s, x; \epsilon) ds \right] dr,$$

where

$$E(s, x; \epsilon) = \exp\left(-\frac{1}{\epsilon} \int_{a}^{x} f dt\right).$$

² This follows from an application of a well known theorem to (2); see, for example, [1].

By (ii), there exists a constant m>0 such that

(19)
$$\left|\frac{\partial f}{\partial x}(x, y(x)) - \frac{\partial g}{\partial y}(x, y(x))\right| \leq m, \qquad 0 \leq x \leq 1,$$

and from (iii), $f(x, y(x)) \ge k > 0$ on $0 \le x \le 1$. These facts, together with (18), imply

$$|w(x)| \leq \frac{\epsilon}{k} + \frac{m}{k} \int_{0}^{x} |w(s)| ds,$$

and this in turn implies

(21)
$$\int_0^x |w(s)| ds \leq \frac{\epsilon}{m} \left[\exp\left(\frac{mx}{k}\right) - 1 \right].$$

If (21) and (19) are applied to (18), there results

$$w(x) = \int_0^x E(s, x; \epsilon) ds + xO(\epsilon).$$

This can be written as

(22)
$$w(x) = \frac{1}{F(x)} \int_0^x F(s) E(s, x; \epsilon) ds + \frac{1}{F(x)} \int_0^x \left[F(x) - F(s) \right] E(s, x; \epsilon) ds + xO(\epsilon),$$

where F(x) = f(x, y(x)).

We appraise the second integral on the right in (22). Let $\rho = \xi + \epsilon^{1/2}$, and suppose $x \ge \rho + \epsilon^{1/2}$. By splitting the integral into two parts I_1 and I_2 , where I_1 is the integral from 0 to ρ , I_2 the integral from ρ to x, we have first of all

$$I_1 \leq 2M \int_0^{\rho} e^{-k/\epsilon^{1/2}} ds \leq M e^{-k/\epsilon^{1/2}},$$

where $M = \max |f(x, y)|$ on R, and therefore $I_1/F(x) = O(\epsilon^2)$. Since both x, $s \ge \xi + \epsilon^{1/2}$ in $\rho \le x \le 1$, it follows from (ii) and (9) that F(x) satisfies a Lipschitz condition in $\rho \le x \le 1$. Thus

$$I_2/F(x) = O\left(\int_{\rho}^{x} (x-s)E(s, x; \epsilon)ds\right),$$

and by a simple calculation it is seen that this implies $I_2/F(x) = O(\epsilon^2)$.

Therefore, after integrating the first integral on the right of (22), we obtain

$$(23) w(x) = \frac{\epsilon}{F(x)} \left[1 - E(0, x; \epsilon) \right] + O(\epsilon^2) + xO(\epsilon), x \ge \xi + 2\epsilon^{1/2}.$$

From (17) it now follows that

(24)
$$w'(x) = O(\epsilon + x), \qquad x \ge \xi + 2\epsilon^{1/2}.$$

Suppose $\lambda < 0$, and v(x) is defined by the relation

$$w(x) = v(x) \exp\left(\frac{\lambda x}{\epsilon}\right).$$

Clearly

$$w'(x) = \frac{\lambda}{\epsilon} w(x) + v'(x) \exp\left(\frac{\lambda x}{\epsilon}\right).$$

Then from (23) and (24), for small $x_1 \ge \xi + 2\epsilon^{1/2}$,

$$(25) v(x_1) > 0, v'(x_1) > 0.$$

Now (15) implies that v(x) satisfies the equation

(26)
$$\epsilon v'' + (f+2\lambda)v' + \left(\frac{\lambda^2}{\epsilon} + \frac{\lambda f}{\epsilon} + \frac{\partial f}{\partial v}y' + \frac{\partial g}{\partial v}\right)v = 0.$$

It follows from (9) that y' is bounded for $x_1 \le x \le 1$; and by (ii), the same is true for $\partial f/\partial y$, $\partial g/\partial y$. Thus there exists a constant m*>0 such that

(27)
$$\left| \frac{\partial f}{\partial v} y' + \frac{\partial g}{\partial v} \right| < m^*, \qquad x_1 \le x \le 1.$$

Let $x=x_2$, $x_1 < x_2 \le 1$, be the first point to the right of $x=x_1$ where $v'(x_2)=0$. From (26) and (27) it is clear that $\epsilon^2 v''(x_2)$ has the same sign as $-(\lambda^2+\lambda f)v(x_2)$ if ϵ is sufficiently small. But $v(x_2)>0$ by (25), and $\lambda<0$ can be chosen so that $\lambda^2+\lambda f<0$, since $f(x_2, y(x_2))>0$. Hence $v''(x_2)>0$ if ϵ is sufficiently small. However this implies that v'(x) is increasing at $x=x_2$, which contradicts the fact that v'(x)>0, $x_1 \le x < x_2$, $v'(x_2)=0$. Therefore v'(x)>0 for $x_1 \le x \le 1$, and since $v(x_1)>0$, it follows that v(x)>0 for $x_1 \le x \le 1$. Thus w(x)>0, $x_1 \le x \le 1$, and in particular v(x)=0 at x=1. This proves (14), and hence the uniqueness theorem for μ sufficiently small.

For the case μ not small we note that the only use of Theorem 1

in the above proof was in the application of formula (9). If $y(x, \epsilon)$ is any solution of (2) remaining in R_0 , then we show (9) must hold. There are two cases, either $|y_0'| \le \epsilon^{-1/2}$ or $|y_0'| > \epsilon^{-1/2}$. For the latter situation it is clear that $y(x, \epsilon)$ cannot remain in R_0 for small ϵ unless there exists a ξ , $0 < \xi < 1$, such that $|y'(x, \epsilon)| = \epsilon^{-1/2}$ for the first time at $x = \xi$. If ξ exists, then it follows by the mean value theorem that $\xi = O(\epsilon^{1/2})$. In either situation there exists a ξ for which $0 \le \xi < 1$, $\xi = O(\epsilon^{1/2})$, $|y'(\xi, \epsilon)| \le \epsilon^{-1/2}$. The existence of such a ξ is all that is needed to prove (8), (9) for the solution of (1), $u(x; \xi, \eta)$, which passes through ξ , $\eta = y(\xi, \epsilon)$ and which remains in R. But since $y(x, \epsilon)$ remains in R_0 , it follows from (8) that $u(x; \xi, \eta)$ remains in R for ϵ sufficiently small. Therefore the argument used for μ small can be applied to extend the uniqueness to any solution $y(x, \epsilon)$ remaining in R_0 .

For the more general case $\epsilon y'' + F(x, y, y') = 0$ the results of Theorems I and II are not valid unless F is severely restricted. Thus even $F = y' + (y')^3$ is not restricted enough for Theorem I to hold as can be seen by direct integration.

REFERENCES

- 1. E. Kamke, Differentialgleichungen reeller Funktionen, Leipzig, 1930, p. 155.
- 2. R. v. Mises, Die Grenzschichte in der Theorie der gewöhnlichen Differentialgleichungen, Acta Univ. Szeged., Leopoldo Fejer er Frederico Riesz LXX annos natis dedicatus, Pars B, vol. 12 (1950) pp. 29-34.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY