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It is the purpose of this paper to prove Theorems 1 and 2 below

which relate the existence, uniqueness, and general behavior of the

solution, y(x, e), for small e>0, of the two-point boundary value

problem

<y" + f(x, y)y'+ g(x, y) = 0,

y(0) = yo,     y(i) = yu

with the solution m(x)  of the corresponding  "degenerate"  initial

value problem

f(x, u)u' + g(x, u) = 0,       m(1) = yi.

Theorem 1 (Existence). Let (0, y0), (1, yi) be two points in the real

(x, y)-plane, and assume:

(i) f(x, y), g(x, y) are real functions such that the differential equa-

tion

(1) f(x, u)u' + g(x, u) = 0

has a solution u(x) on Ogx^l, with m(1) =yi and u(0) =w0^yo.

(ii) f(x, y), g(x, y) are of class C in a region

R:        0 g x g 1, I y - u(x) | g a,        a > 0,

which includes the point (0, y0).

(iii)  There exists a constant k>0 such thatf(x, y)^k for (x, y) in R.

Then, for all sufficiently small e>0, there exists in R a solution

y(x) =y(x, e) of

(2) ty" + f(x, y)y' + g(x, y) = 0

satisfying the boundary conditions

y(0) = yo,      y(l) = yi.

Further, y(x, e)—>m(x), y'(x, e)—>m'(x), as e—>0, uniformly on any sub-

interval 0 < 5 g x ^ 1.

Remarks. From the proof of Theorem 1 it will be seen that the
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result of the theorem is valid if the hypotheses (ii) and (iii) are re-

placed by the somewhat weaker assumptions

(ii)*/(x, y), g(x, y) are of class C in a region

+    0 S * á a < 1,   yo-ßuyuuo + ß     (a, ß > 0),

a = X á 1,     I y - u(x) I S 7 (T > 0) ;

(iii)* there exists a constant k>0 such that/(x, u(x))=k, O^x^l,

and

/»MO

I    /(O, y)¿v > 0, yo â y < «o;
«/y

and if i? is replaced by R*.

The assumption in (i) that Moèyo is no restriction for if u0<yo,

then the change y*= — y, u*= — u gives two equations (1)* and (2)*

of the same type as (1) and (2) but with m*>y*- Also, by a change

of variable of the type x* = px+q, the interval O^x^l can be re-

placed by an arbitrary bounded interval. It is further clear that if

e<0, a similar theorem will hold with the role of the left and right

boundaries, x = 0 and x = l, interchanged.

Assuming the existence of both u(x) and y(x, e), R. v. Mises [2]1

proved recently that as e—>+0, y(x, e)-^u(x) and y'(x, «)—hí'(x)

uniformly on every subinterval 0<S=x = l. He assumed that/(x, y),

g(x, y) were continuous on a rectangle containing (0, y0) and (x, m(x)),

and/>0 there.

Theorem 2 (Uniqueness). Under the assumptions (i), (ii), (iii) of

Theorem 1, for sufficiently small e > 0, there exists at most one solution

y(x, e) of (2) in Ro satisfying the boundary conditions y(0) =yo, y(l)

= yi. The region R0 satisfies the same inequalities as R but with a re-

placed by a smaller quantity.

Remark. If (ii) and (iii) are replaced by (ii)* and (iii)* the result

of Theorem 2 is valid in R* where Í?* satisfies the same inequalities

as R* but with ß and y replaced by smaller quantities.

Proof of Theorem 1. If yo<u0, let y ó >0. By virtue of (ii)

there exists, on a sufficiently small interval to the right of x = 0, a

solution of (2), y(x)=y(x, e) =y(x, e; y0, yi), for which y(0, €)=y0,

y'(0, e) =yi, and such that y(x, e) remains inside R. Put

/(0, y)dy + ix,
1/0

1 Numbers in brackets refer to the references cited at the end of the paper.
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where e is such that e1'2 is less than the integral in (3), and p is a real

parameter whose magnitude is so small that ey¿ >e1/2>0. It will be

shown that given any 5i, 0<Si<o, then for small enough e and p

there exists a £>0 such that

(4) ey'iO = e>/2

and if y(£)=?7,

(5) 0 < g £ (mo + íi - yo)«1'2,        11» - «o I < «i.

For small enough e, and for p>0, it will be the case that v>Uo, while

for p<0, 7]<Uo. In fact there exists a o->0 (independent of e) such

that for M>0,7/-Mo>A«r+0(e1/2) andfor¿i<0, u0~v> -po- + 0(e>2).

In order to prove these facts, let y'(x) =e~1/2 for the first time at

x = £i, and y(x)=Mo + 5i for the first time at x = £2, and define £

= min (¡ii, £2). For small e either £1 or £2 must exist and thus £ exists.

From the definition of £, and the mean value theorem for y(x), it

follows that 0<£^(mo+5i—yo)e1/2. Integrating (2) from x = 0 tox = £,

and using (3), we have if rç=y(£)

«/<*) = /

"O

/(O, y)dy + p

(
+  f   U(0, y(x)) - f(x, y(x))]y'(x)dx -  f   g(x, y(x))dx.

J 0 •' 0

From (ii) it follows that the last two terms are 0(e1/2), as e—>0, and

hence the above may be written as2

(6) ey'(|) = /(0, y)dy + p + CV'2).
J n

For fixed oi>0 and |ju| and e small it follows from (6), since y'(£) >0

and/(0, Mo)>0, that r)=Uo + Oi is impossible. Thus in fact £=£1 and

(4) follows. From (6) follows

C "0
(7) /(0, y)dy + p = OfV'2).

•'i

Moreover (7) implies that if \p\ and e are sufficiently small, 117 — «o|

<Si. This proves (5). The statements following (5) follow easily from

(7) if o-/(0, mo) = 1/2.
If yo = M0, (3) becomes ey0' =p, and if u>e1/2>0, define £1, £2, and

In the following all O terms refer to t—*0.
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£ as before. Then 0<£^5i€I/2, and (6) follows as before. If /x< — e1/2

<0, define x = £i to be the first point such that y'(x) = — e~1/2, and

define x=£2 to be the first point for which y(x)=u0 — Si. If £

= min (¿i, £2) in this case, then 0<£:£Sie1/2, and again (6) follows.

The remainder of the proof of (4), (5), and the remarks following (5)

is the same as for the case yo<Uo-

Denote by u(x; £, r¡) that solution of (1) for which w(£; £, n) =n.

This solution will exist on O^x^ 1 if e and 5i are small enough since

the given solution u(x) is a continuous function of its initial point.

Choose e and Si so small that this will be true. Then u(x; £, n)—*u(x)

uniformly on Osjx^l as (£, 17)—>(0, u0).

It will now be shown that as far to the right of £ as y(x, e), y'(x, e)

exist

(8) I y(x, e) - *(*; |, „) | = 0(¿'2), £ á * á 1,

(9) I y'(x, e) -«'(*;£, ij) | - 0(e), í + e,/!^ál.

By a familiar continuation argument, this will then prove the exist-

ence of y(x, e) on 0=x^l.

In order to prove (8), let z(x)=z(x, e; £, n) =y(x, t)—u(x; £, n).

From (1) and (2), if ¡-^X—l, and y(x, e) exists and is in R (if x is

near enough to £, y(x, e) certainly exists), then

(10) ez" + /(*, y)z' = r,

where

r = [g(x, u) - g(x, y)] +l[f(x, u) - f(x, y)]u'

r      di 9/1
+ i/-2(x, u)   f(x, u) — (x, u) - g(x, u) — (x, u)

L ox ox J

R/ 3g "I
+ tf~\x, u)   — (x, u)g2(x, u)-(x, u)g(x, u)f(x, u)   .

\_du 'du J

Because of the assumptions (ii), (iii), and the mean value theorem,

it follows that there exists a constant c > 0 such that

(11) \r\ úc[\z\ + t].

Integrating (10) we obtain

*'(*) = z'(£) exp [- 1 j"f(t, y(/))¿<]

(12)

+ — j  r exp j-f  /(i, y(0)*| ds.
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Since y'(£, e) =e~1/2, [z'(£)| ^2e_1/2 if e is sufficiently small, and if this

is combined with the fact that/(x, y) ^k, then (12) gives

| z'(x) | = 2e-1'2 exp j-(x - £)1

(13)
ce       c   rx .        .                 k "1

+ — H-I     | z(s) | exp-(x - s)\ ds.

Integrating the inequality  (13)  yields the following estimate for

\z(x)\ (note that z(£)=0),

2e1'2      et
I z(x)   ¿ -— + —

k k

+ -/'(/' | *(s) | exp [--(*-*)]&) A,

and by an interchange of the order of integration in the last term we

obtain

.       2e1'2       ce        c   rx ,        !

«(*)|á -T- + T + T I    I «Wl*-
2e1'2       ce        c

i.

If e is small enough, ce<e1/2, and hence

3e1'23ell¿       c   rx
z(x) | £ —- + -        | *(,) | <fa.

It follows easily from this that

3e1'2

and therefore

r*,       , 3e1'2 r       /c \       "1
J     |zW|a-5 = -—[^exp (^-(x-öj-lj, ? = x = 1,

,        ,      3e1'2       /c \
|z(x)| =—exp ( — (*-£)), eáxáL

This proves the estimate  (8).  Formula (9)  follows directly from

(8) and (13).

It still remains to show that y0' can be chosen so that y(l, e) =yi.

From the remark after (5), if p<0 and € is small enough then m0 — r¡

> —pa/2. Hence by the continuity of m(x; £, rj) in £ and uniqueness,

w(x; £, r;)<M(x), and on account of (8), y(x,e)<u(x) on £ = x = l

if e is sufficiently small. In particular y(l, e)<yi. Similarly, for

p>0, and e small enough, y(l, e)>yi. Since y(x, e) is in R for O^x^l
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for small e and p., y(x, e) is continuous in p.. By the continuity of

y(l, e) with respect to p. it follows that for e sufficiently small, and

some p., y(l, e) =yi. This, with (8) and (9), completes the proof of the

existence theorem for the boundary value problem.

Proof of Theorem 2. It will be shown that the solution y(x, e)

= y(x, e; yo, yi) considered as a function of y i satisfies

(14) -^7(l,e;y0,yo')>0,
dyo

for e sufficiently small. This clearly implies the uniqueness of y(x, e)

satisfying (2) and y(0, e) =y0, y(l, e) =yi.

Let

dy
w(x) = w(x, e; y0, yo) =- (x, e; y0, yo).

dyo

For fixed e, w(x), w'(x), w"(x) exist for O^xgl,3 and from (2)

(15) fw" + fw' + ( — y' + — ) w = 0.
\dy dy/

It is clear that

(16) w(0) = 0,        w'(0) = 1.

In order to prove (14) we first obtain appraisals for w(x), w'(x)

near x = 0. If (15) is integrated, the initial values (16) being used,

then this yields

(17) ew' + fw = e +  f   ( — - —) wdt.
Jo   \dx     dy/

Another integration results in the following expression for w(x):

w(x) =   I    E(s, x; t)ds
Jo

(18)

+ \fo^l'fyYlfr E{S'X''t)d¥'dy

where

E(s, x; e) = exp C-tJ»-
3 This follows from an application of a well known theorem to (2) ; see, for example,
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By (ii), there exists a constant m>0 such that

(19)
df dg
— (x, y(x)) - — (x, y(x))
dx dy

g m, 0 g, x g 1,

and from (iii),/(x, y(x))^k>0 on O^x^l. These facts, together

with (18), imply

(20) | w(x) | ^ — + — | tt>(i) | ¿5,
k        k J o

and this in turn implies

(21) J * | w(s) | «fe á — [ exp (^j - l].

If (21) and (19) are applied to (18), there results

w(x) =   f   F(í, x; e)áí + xO(e).
Jo

This can be written as

1     /•*
w(x) = —— I    F(s)E(s, x; e)ds

<22)      FW;-

F(x) Jo

where F(x) =/(x, y(x)).

We appraise the second integral on the right in (22). Let p =£+e1/2,

and suppose xâp+e"2. By splitting the integral into two parts Ii

and I2, where h is the integral from 0 to p, I2 the integral from p to

x, we have first of all

Ii = 2M fe-u^ds = Me-""l'\
Jo

where Af = max |/(x, y)\ on R, and therefore Ii/F(x) =0(e2). Since

both x, j^£+e1/2 in pgx^l, it follows from (ii) and (9) that F(x)

satisfies a Lipschitz condition in pgxgl. Thus

I2/F(x) =o(fX(x- s)E(s, x; e)ds\

and by a simple calculation it is seen that this implies I2/F(x)

= 0(e2).
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Therefore, after integrating the first integral on the right of (22),

we obtain

(23) w(x) = — [1 - £(0, x;e)]+ 0(t2) + xO(e),    x = £ + 2e1'2.
F(x)

From (17) it now follows that

(24) w'(x) = 0(e+ x),        x ^ £ + 2e1'2.

Suppose X<0, and v(x) is defined by the relation

/Xx\
w(x) = v(x) exp (—1.

Clearly

X /Xx\
w'(x) = —■ w(x) + v'(x) exp I — I.

Then from (23) and (24), for small xi^£4-2e1/2,

(25) v(xi) > 0,        v'(xi) > 0.

Now (15) implies that v(x) satisfies the equation

/X2      X/     df dg\
(26) «/' + (/+ 2X>'+ ( — + -^+ — y' + — )v = 0.

\ e e        dy dy/

It follows from (9) that y' is bounded for Xi^xiSl; and by (ii), the

same is true for df/dy, dg/dy. Thus there exists a constant m*>0

such that

(27) — y'-\-
dy dy

< m*, X\ ^ x = 1.

Let x = x2, Xi<x2ál, be the first point to the right of x=Xi where

î/(x2)=0. From (26) and (27) it is clear that eV'(x2) has the same

sign as — (\2+\f)v(x2) il e is sufficiently small. But z>(x2)>0 by (25),

and X<0 can be chosen so that \2+\/<0, since/(x2, y(x2))>0.

Hence v"(x2)>0 ii t is sufficiently small. However this implies that

v'(x) is increasing at x=x2, which contradicts the fact that i>'(x)>0,

Xi^x<x2, v'(x2)=0. Therefore »'(x)>0 for Xi^xrgl, and since v(xi)

>0, it follows that v(x)>0 for xx^x = l. Thus w(x)>0, X!gxgl,

and in particular w(l) =dy/dyi >0 at x = l. This proves (14), and

hence the uniqueness theorem for p, sufficiently small.

For the case p, not small we note that the only use of Theorem 1
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in the above proof was in the application of formula (9). If y(x, e)

is any solution of (2) remaining in Ro, then we show (9) must hold.

There are two cases, either |y0' | ^e-1/2 or |y0' | >e-1'2. For the latter

situation it is clear that y(x, e) cannot remain in R0 for small e

unless there exists a £, 0<£ < 1, such that | y'(x, e) | =e_1/2 for the first

time at x = £. If £ exists, then it follows by the mean value theorem

that £ = 0(e1/2). In either situation there exists a £ for which 0^£<1,

£ = 0(e1/2), |y'(£, e)| ^e_1/2. The existence of such a £ is all that is

needed to prove (8), (9) for the solution of (1), m(x; £, r¡), which

passes through £, v =y(£, e) and which remains in R. But since y(x, e)

remains in R0, it follows from (8) that m(x; £, 17) remains in R for e suffi-

ciently small. Therefore the argument used for p small can be ap-

plied to extend the uniqueness to any solution y(x, e) remaining in i?0.

For the more general case ey" + F(x, y, y') =0 the results of Theo-

rems I and II are not valid unless F is severely restricted. Thus even

F = y' + (y')3 is not restricted enough for Theorem I to hold as can

be seen by direct integration.
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