
ON THE ADDITION THEOREM FOR MULTIPLY
PERIODIC FUNCTIONS

S. BOCHNER

We shall comment on the following classical proposition.

Theorem 1. (i) The Weierstrass function satisfies a relation

(1) Pt(f(z + w), f(z), p(w)) = 0,

identically in independent variables, z, w, where Po(ot, ß, y) is a poly-

nomial not =0 with constant coefficients.

(ii) More generally, any doubly periodic meromorphic function f(z)

satisfies a polynomial relation

(2) Poo(/(*+«,),/(*),/(«,)) = 0.

(iii) Even more generally, for any three such functions

(3) f(z),       4>(z),       Hz)

with the same periods, the last two not =c, we have a relation

(4) P(f(z+w),4>(z),4,(w)) = 0.

(iv) Also, p(z+w) is a rational function of p(z), v'(z), $>(w), s>'(w);

and more generally  if 0'(2)>   $2(z)   are  rationally  independent   [as

p(z),   s>'(z)  are] and yp\w), ip2(w)  are rationally independent, then

f(z+w) is a rational function of<pl(z), <b2(z), ypx(w), \p2(w).

On the face of it, part (i) is a particular case of part (ii), and the

latter part of (iii), but actually all three parts are algebraically

equivalent by the following elementary argument. For given periods,

we introduce the closed Riemann surface V2 of genus p = l on which

our meromorphic functions are suitably defined, and we take it as

known that on such or any other closed Riemann surface of any genus

p = 0, any two meromorphic functions are algebraically dependent

one on the other. That is to say, if for any/(z) ^con F2 we introduce

the function field

(5) K[f(z)]

over complex constants, then any other g(z) is algebraic over (5),

thus satisfying a polynomial relation P°(f(z), g(z))=0. In particular,

the functions (3) are connected with the Weierstrass function by

relations
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Pi(v(z + W), f(z + W)) = 0, P2(v(z), faz)) = 0,

P,(v(w), ypiw)) = 0,

and if we start out from (1) then formal algebraic elimination as

between (1) and (6) will produce (4). A similar argument will

equate the two halves of part (iv). Also a suitable way of expressing

(4) is to say that the two-variable function

(7) f(z, w) = f(z + w),

whose domain of existence is the product V2X V2 of our torus with

itself, is algebraic over the function field

(8) K[faz);faw)],

and the second half of (iv) states that it is contained in

(9) K[p(z),4>K*);P(v>),p(w)].

An "addition theorem" suggests colorful connections to arith-

metic, and such are indeed manifest in statements of many facets.

The point we wish to make, however, is this—that to our theorem, as

stated, no such connection is as yet relevant and that it is a special

case of a vastly more general and entirely colorless proposition in

which additivity is in no way referred to.

If we take any doubly periodic periodic meromorphic function/(z),

and introduce the two-variable function (7), then for each fixed w

(with some possible exceptions) the latter is again such a function in

z, and for each fixed z it is such a function in w, and this is all that

is needed to validate our conclusions. In fact, if we realize that for

any three (or more) meromorphic functions on V2 there is a point

of the space in the neighborhood of which they are all holomorphic

(without any polar singularities), then Theorem 1 is obviously con-

tained in the following "local" theorems which we shall immmediately

state for multi-dimensional variables as well.

Theorem 2. If A is a domain in the space of k complex variables

z=(z(1), ■ ■ • , zm) and B is a domain in the space of I complex vari-

ables w = (w(1>, • • • , w(i)); if we are given a finite number of holo-

morphic functions

(10) 4>K*), ■■■ , 4>r(z)

in A, and a finite number of holomorphic functions

(11) *»r>). • • • . lK«0

in B; and if a holomorphic function f(z, w) in AXB has the property
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that for each w in B it is algebraic over

(12) *[♦»(*). ' • • , **(*)]

ana* for each z in A it is algebraic over

(13) K[V(w),--- ,*•(»)];

then in AXB it is algebraic over

(14) K[p(z), ■■■ , 4>'(z);V(w), ■■■ , *•(»)].

Theorem 3. If the function f(z, w) is for each w in B contained in the

field (12) and for each z in A in the field (13), then in AXB it is con-

tained in the field (14).

There is also a mixed theorem as follows.

Theorem 4. If f(z, w) is for each w algebraic over (12), of a degree

not greater than g, where g is independent of w, and if for each z it is

contained in (13), then in A XB it is algebraic over (14), of degree not

greater than g.

A particular consequence of Theorems 2 and 3 is the following

known generalization of Theorem 1 to many dimensions.1

Theorem 5. If for k complex variables there are given k algebraically

independent meromorphic functions

(15) *Kz), ■■■ , 4>k(z)

with the same 2k "independent" periods, then for any other such function

f(z)—which in particular may be one of the (^(z)—the new function

f(z+w) is algebraic over

(16) K[d>i(z), ■■■ , d>k(z);<t>\w), ■■■ , d>k(w)];

and if there are given k + l rationally independent functions

(17) <t>°(z), *»(*), • • • , d,k(z),

then f(z+w) is rational over

(18) K[d,»(z), ■■■ , <pk(z);<j>\w), ■■• , d>k(w)].

Although syllogistically subordinate to Theorems 2, 3, our Theorem

5 has nevertheless the distinguishing feature that in it the two-

variable function occurring is actually a one-variable function in

which the variable z has been replaced by the two-fold argument

1 A. Krazer and W. Wirtinger, Abelsche Funktionen und allgemeine Thetafunk-

tionen, Encyclopädie der mathematischen Wissenschaften II B 7, p. 827.
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z + w. Now this distinguishing feature has a generalization of its own

and it is as follows.

Let the domain A of our theorems be a coordinate neighborhood of

a complex manifold V2k; let Wu be a (complex) Lie group acting on

V2k, and let B be a neighborhood of the identity in W2¡. Now, if f(z)

is meromorphic on V2k and has no singularities in A, and if w is a point

of B, and if we denote by f(w(z)) the function resulting from carrying

out the homeomorphism "w," then we obviously obtain a two-variable

function/(z, w) on AXB to which our Theorems 2, 3, 4 can be ap-

plied, provided, of course, that finite systems of functions {<¡>p(z);

yp"(w)} as prescribed in the theorems are available on A, B.

A pertinent though seemingly "trivial" illustration arises if for

V2k we take the ordinary Gaussian sphere V2 and for W2i the group

We of projective transformations

w' + w"z
z' =

w" + w""z

on it. A meromorphic function on V2 is any ordinary rational func-

tion in z,

Y, a„z»
(19) f(z)=R(z)=-^rfL>

22b,z"

and the quantities w', w", w'", w"" are obviously meromorphic func-

tions on the rational surface

(20) w'w"" - w"w'" = 1

constituting W6. Now, the two-variable function

/ w' + w"z \
(2D fiz,w) = R( mi )

\w   + w    z/

has the property that for each w it is meromorphic in z and for each

z meromorphic in w and, in conformity with Theorem 3, it is indeed

meromorphic in (z, w). Also, if f(z) is algebraic of a degree g, then

for each w, /(z, w) is algebraic of a degree not greater than g, and

for each z it is rational in w, and, in conformity with Theorem 4, it is

indeed algebraic in (z, w) of degree g.

The example obviously falls under the following assertions, (a) If

the holomorphic function/(z, w) in AXB is for each w algebraic in

the local parameters z, and for each z algebraic in the parameters w,

then it is algebraic in (z, w). iß) If it is rational in z and w separately

it is rational in them jointly. (7) If for each w it is algebraic in z of
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degree not greater than g, and for each z rational in w, then it is

algebraic in (z, w) of degree not greater than g. Now, assertion (ß)

was first stated by Weierstrass,2 and then proven by A. Hurwitz;3 and

assertions (a) and (7) were set up and proven by ourselves4 when re-

producing the proof of Hurwitz in the simplified version given to it

by H. Kneser ;6 and the proofs to follow of the general Theorems 2,3,4

will be nearly literally the same as those given in the paper cited in

footnote 4 for the particular assertions (a), (ß), (y). But before giving

the proofs we wish to point out that although the problem of Weier-

strass and Hurwitz dealt directly only with meromorphic functions

of the ordinary kind, that is to say, with functions on complex pro-

jective spaces, yet the context in which it arose was one dealing

with multi-periodic functions and Abelian integrals primarily; so

that our general versions of the theorems may be said to be related to

the original ones not only syllogistically but even genetically as

well, although our proof itself would hardly betoken such a develop-

ment.

The proof of our theorems rests on the following lemma, which

by itself does not yet refer to analyticity or even continuity.

Lemma 1. // Fi(z, w), • ■ ■ , Fn(z, w) are functions in AXB, not

all =0, and if they satisfy a relation

(22) ci(w)Fi(z, w) + • • • + cN(w)FN(z, w) = 0

with arbitrary coefficients {cn(w)} for which

(23) | ci(w) \2 + ■ ■ ■ + | cN(w) [2 > 0,

then they also satisfy such a relation with other coefficients Cn(w), not all

= 0,from the smallest function ring over complex coefficients containing

all functions {F„(a, w)} for all special values z = a and n = 1, • • • , N.

In particular if each Fn(z, w) belongs to (13), then there are coefficients

Cn(w) belonging likewise to (13).

2 C. Weierstrass, Untersuchungen über die 2r-fach periodischen Functionen von r

Veränderlichen, J. Reine Angew. Math. vol. 89 (1880) pp. 1-8; or, Werke, vol. 2, pp.
125-133.

3 A. Hurwitz, Beweis des Satzes, dass eine einwertige Function beliebig vieler Vari-

abein, welche überall als Quotient zweier Potenzreihen dargestellt werden kann, eine

rationale Function ihrer Argumente ist, J. Reine Angew. Math. vol. 95 (1883) pp. 201-

206.

* S. Bochner and W. T. Martin, Several complex variables, Princeton, 1948, pp.

199-203.

6 H. Kneser, Einfacher Beweis eines Satzes über rationale Funktionen Zweier Ver-

änderischen, Abh. Math. Sem. Hamburgischen Univ. vol. 9 (1933) pp. 195-196.
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Proof. We write relation (22) for N values Zi, • • • , zn, thus ob-

taining a system of N homogeneous equations in the quantities cn(w).

Because of (23), the determinant

(24) D(z; w) =

Fi(zi, w)  ■ ■ ■ FN(zi, w)

Fi(zN, w) ■ ■ ■ F^ztf, w)

must vanish identically in wEB;ziEA, • • • , ZnEA. We now replace

the letter zn by z, ¡and develop the determinant in terms of its last

row. This leads to a relation

(25) 2~2 Cn(zi, ■ ■ ■ , zn-i; w)Fn(z, w) = 0

in which the functions

(26) Cn(zi, , zN-i; w)

are, but for  ±  signs, the (re—1)-dimensional determinants of the

matrix

Fi(zi, w)      ■ ■ • Fx(zi, w)

(27)

Fi(zjv_i, w) • • • Fi(zN-i, w)

and we first assume that not all functions (26) vanish identically in

all variables. Hence there exist numerical values Zi = Oi, • • • , Zjv-i

= a;v-i such that the functions

Cn(w) = Cn(ax, • ■ ■ , an-i\ w)

do not vanish identically in w, and for such numerical values relation

(25) reduces to relation (22) with new coefficients cn(w) having the

property stated in the lemma. If, however, all functions (26) vanish

identically, then the determinant (24) has a principal minor

A =

Fai(zav w) ■ ■ ■ Fam(zav w)

Fai(zam, w) ■ ■ ■ Fam(z«m, w)

which vanishes identically, but which has at least one subdeterminant

of order m — 1 which does not vanish identically. By the result just

proved there exists a relation
%

m

2~2 Cait(w)Fa„(z, w) = 0,
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and by inserting vanishing coefficients Cn(w) we obtain the con-

clusion.

Proof of Theorem 3. We form the products

(y(z))»i • • • (*'(«))"

for all combinations of integers ni = 0, • • • , nr^0 and denote the

resulting sequence of "monomials" in some ordering by po(z),

pi(z), ■ ■ • . By assumption of the theorem we have for each w a

relation

(m \ n

£ a,(w)p,(z) )f(z, w)+2Z b,(w)p,(w) = 0

with m, n depending on w, and

m n

(29) E|^W|2+2|M«-)|2>0,
(1=0 r—0

and if we multiply it by a factor we may presuppose the normaliza-

tion

(30) ¿|^(w)|,+ ¿|*,(«')|,= l-
>i=0 »—0

By the same argument as on p. 201 of the paper cited in footnote 4,

there exist some combination of degrees (m, n) for which relation

(28) holds for a subdomain of B, and if we now denote the sub-

domain itself by B, then (28) will hold everywhere in A XB for a

given set of degrees (m, n). If now we put N = m+n, F?(z; w)

= Pm(z)/(z, w)ior p. = l, - ■ - , m, and Fm+r(z; w) =p,(z) iorv = l, • -

n, then our lemma becomes applicable, and the conclusion is that

there is also a relation (28) with coefficients a»(w), b,(w) belonging

to the function ring (13), and not all =0, which is precisely the

assertion of the theorem.

Proof of Theorems 2 and 4. In this case we have for each w a
relation

m      g

(31) Z E %y(u>)PÁz)f(z, w)y = 0,
»1=0 7—0

and for some subdomain B0 oí B this relation is available for the

same (m, g), where in the case of Theorem 4 the integer g is the one

specified in the theorem. We now put N = m(g+l), and apply the

lemma to the functions
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Fn(z, w) = p»(z)f(z, w)\

As a consequence of the lemma we obtain a new relation with the

same (m, g) in which the a„y(w) belong to the smallest function ring

containing all p„(a)f(a, w)"', that is, all/(a, w)y, and in the case of

Theorem 4 this terminates the proof immediately. In the case of

Theorem 2 we have to add the step that the new coefficients are

algebraic over the smallest function ring containing all f(a, w), and

by an elementary theorem on field extensions a second choice of

coefficients a^w), with other (m, g), will produce a final relation

(28) in which the coefficients a^w) are contained in the function

ring (13) itself, as claimed.

Remark. The two function fields (12) and (13), of which (14) is

the "product," have been assumed to have each a finite basis over

the field of complex numbers, but the proof of the theorems just

completed shows that this requirement of finiteness can be relaxed

in the following way. The function field (13) of holomorphic func-

tions on B can have an arbitrary potency, and we shall denote it by

Kw. The field on A however—we shall denote it by Kz—can-

not be allowed to be arbitrary, but it need not be finite either.

Rather, it suffices to assume that it is the limit of an increasing

sequence of subfields K\, q= 1, 2, • • • , of which each has a finite

basis, such that, in the case of Theorem 2, our function F(z, w) is for

each w algebraic over some K\, q = q(w), and contained in it in case

of Theorem 4. The conclusion then is that F(z, w) is algebraic, or

rational, over the product KWXKZ, and indeed over KwXKl", for

some suitable index q0 depending on the function.
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