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1. Introduction. We denote by C the space of all real-valued

functions x(/) which are continuous for 0^t = i and which vanish

at t = 0. Let T be the (possibly nonlinear) transformation

(1) yit) = Txit) = xit) + Aix\t)

defined over some Wiener-measurable subset r of C and having the

property that T takes T into a set 7T in a one-one manner.

In an earlier paper [l],1 two of the present authors have studied

the behavior of Wiener integrals over V under one-one transforma-

tions of the form (1) which possess certain smoothness properties.

In another paper [3], they have shown (for the case T = C) that the

pre-image, x(i) = T~1yit), can be expressed in terms of y(¿) as a limit

in the mean of a series of "Fourier-Hermite" functionals.

In this note we wish to indicate a minimizing process which will

produce approximate solutions of (1) in terms of simpler Wiener

integrals. These approximate solutions approach the true solution in

the sense of the Li(C) limit in the mean.

Specifically, these approximate solutions are obtained as follows.

Let {ai(s)} be any sequence of functions closed in L2[0, l]. Let m

and p denote the «-vectors mi, • • • , mn and pi, • • • , pn, and let

A%\t) be a solution of the system of algebraic equations

2Z      uZrpAm it) = Vp it), each p¡ = 0, 1, • • • , re,
ml, ' ' ' .mn—0

where2

nw     n     (     ni \    mk

UÍ   = Jr   n{J    ok(s)dTx(s)j    dwx

and

V„\t) = Jr x(/)Il{J    akis)dTxis)j    d„x.

Presented to the Society, December 26, 1951 ; received by the editors May 3, 1951.

1 Numbers in brackets refer to the bibliography at the end.

2 If the functions {ak(s) J are of bounded variation on [O, 1 ], the Stieltjes integrals

can be interpreted throughout as Riemann-Stieltjes integrals; otherwise (if they are

merely of Li[0, l]) the integrals are Paley-Wiener-Zygmund integrals [S].
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It will be shown that under suitable conditions on A(x| /)

T-*y(t) = l.Lm. ¿       Amn\t) f[ \ f ' ak(s)dy(s)\ ,
"-*»       mi,-..,m„-0 *-l   WO /

for each fixed t on [0, l] (where the l.i.m. is taken in the sense of

Li(rr)). The linear equations giving A^(t) will necessarily be con-

sistent.

The conditions which we wish to impose on the transformation T

are precisely those of Theorem V of [l]. Since they are lengthy and

are stated there explicitly, we shall not repeat them here. However,

in the formulation of our result we shall use three functionals intro-

duced in [l] related to A(x|i); we define these here, using the nota-

tion of [l]. Let

$(x) =   f   T—A(x| /) 1 dt + 2 \      — A(*| 0 \dx(l).

Let

K(x\t, s)

be the Volterra derivative of A(x|¿), that is, a functional such that

— A(x+hz\t)\     =  I    K(x| t, s)z(s)ds
âh Jh~o     Jo

holds for xEI\ 0^t = l, and z(t)EC. And let D(x) be the Fredholm

determinant of K(x \t, s):

D(

K(x\ Si, Si)  ■  • •  K(x\ Si, Sn)

*,-I+t±f'...r
„=i n\Jo J o

K(X | Sn, Sl)   ■  ■  •   K(X | Sn, Sn)

dsi ■ • • dsn-

2. The linearization theorem. We are now in a position to state

our theorem.

Theorem. Let T, given by (1), be a transformation which satisfies

the conditions in Theorem V of [l]. Further, let it have the properties

that D2(x) exp { — 2<£(x)} and | D(x) \_1 exp {<J>(x)} both be summable

on T. Let {ak(t)} be any closed set of real functions in L2[0, l]. For

fixed t on [0, l] and for each positive integer n let the constants

Am}...¡mn (t) be determined so as to minimize

(2)    f"[*(/)-      Ê       ¿-¿....«.(Onl f   ak(s)dTx(s)\m'Tdwx.
J r   L ,«!,-■■ ,m„-o k-i \Jo J     A



140 R. H. CAMERON, B. W. LINDGREN AND W. T. MARTIN [February

Then for this value of t it follows that

(3)

lim   I T-'yit) -     Z      Ai;....,mn(t)
TT I m,,- • ..m.=0

II "j   I    ak(s)dyis)\     \dwy = 0.
i«,i Wo /

In proving this theorem we shall make use of two results: first, that

the functionals

, n, n = 1, 2,

n      ¡     n 1 \    mk

(4) nil    akis)dxis) >     , i»* = 0,
*=1  v J 0 )

are closed in the L4 sense over C; and second, Theorem V of [l], the

conclusion of which states that if F[y] is any Wiener-measurable

functional on 7T for which either member of the equation below

exists, then the other member also exists, and they are equal:

(5)
/> to /• w

F[y]dwy=        F[x + A(x\-)]e-*f>\D(x)\d*
it J r

An outline of the proof of the first of these results will be given fol-

lowing the proof in the next section.

3. Proof of the theorem. We notice first that the functional

T~lyit) belongs, for each /, to L4(7T) ; for, applying (5), we have from

Schwarz' inequality

I r [T~ly(t)Ydwy\ = (f   [*(*)]««-*<*> | D(x) | dwx\

ÚX    [xit)Ydwx I    e-2*« | Dix) \2dwx,

and fr[xit)]sdwx is known to be finite for all t in [0, l]. Then by

the closure of the functionals (4) in L^TT), there exist—for given

€>0 and each /—an integer N and constants B%\t) such that for

n = N,

fTr-iy(0-    Ê    <}.....-.(*)
^ÎTL mi,...,m„=0

n     /     /• 1 \    mh~l 4

•n|J    aAs)dyis)j    J dw

mi,---,mn=0

(6)

y < e.

Applying now (5) to the integral in (6), we obtain
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x(t) -    E    <.• ■•,«.(<) II i     o*(í)¿r*(í)^
r    L m,,.",m,=0 fc=l   WO /        J

■e-*M\D(x)\ dwx < 6.

Then from Schwarz' inequality we have

/■tor n "f/*1 }  mt_l2

\x(t) -      E       £-,.•••.«,(<) II <  I    ak(s)dTx(s)\     \dwx
r    L mlT-.,mn=0 fc=l   WO / J

< <V/2,

where

Ql=   f   «•(») | D(x) [-»a.* < ».

Now since the functions ^„'(Z) were chosen to minimize (2), it

follows that (2) is also less than Qie112. If we make the change of

variable y = Tx in

(7)       JïTL mi,...,m„=0 t-1  WO /        J

.e*(r-%V)\D(T-iy)[-Hwy,

using (5), we see that (7) is equal to (2), and that hence (7) is less

than Çie1/2. Once again employing Schwarz' inequality, we have

\T-"y(t)-      E       AZ -...mn(t)U \\    '¿s)dy(s)\     \dwy
IT I mt,• ••,«.-<> *=1 W 0 7        1

< Ö2(Ö161/2)1/2,

where

Q¡ =   f   e-^^'iV>\D(T-iy)\dwy.
J TT

But then using (5) again, we see that C% =f^,e~2^x) \ D(x) \ 2dax, which

we are assuming to be finite. Thus (3) is established.

We discuss next the closure of (4). We assume that the {a&(/)}

are orthonormal as well as closed. The Schmidt process shows that

this involves no loss of generality. It was shown in [2] that the

"Fourier-Hermite" sequence

(8) {ñff-*{J «*W¿*(0}|
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is closed in L2(C). Nothing essentially new is involved in the proof

that (4) is closed in L„(7T) for p> 1. We give here only a brief indica-

tion of how this closure can be established.

It is known3 that if {Hk(u)} are the Hermite polynomials, then for

p>l the sequence {e~u*lpHk(u)} is complete in relation to

Up'(— °°, °°), where l/p + l/p' = l. Induction based on the Fubini

theorem shows that the sequence

(9) \ IT Hmk(uk) exp (-uk/p)> ,        mi, ■ ■ ■ , mn = 0, 1,

is complete in relation to Lp-(— co, oo)n. But this completeness im-

plies4 closure of (9) in Lp(— », oo)n. The method of [2] in showing

closure in L2(C) of (8) can then be carried over essentially unchanged

to show closure of (8) in LP(C). Finally, since Hk(u) is a polynomial,

the closure of (4) becomes evident upon rearranging the terms in the

approximating linear combinations of Fourier-Hermite functionals.

Remark. In the theorem the constants {^4^'} were determined so

as to minimize (2). We may, if we wish, alter this procedure and

determine constants { C%\t)} lor each / so as to minimize

/» w r~ n

A(x|'0+     Z     £•,.•••.«.(')
Jr   L »..■■■.»,=»

n     I     /»l -i    m*-|2

" IT \  i     ak(s)dTx(s) >       dwx.

Then the same argument used for (3) would show that

/» w I T~ly(t) - y(t)
TV I

-       2~2       Cm1.....mn(t)Ji<   I    ak(s)dy(s)>     \dwy = 0.
•>!, ■ • -,m„=.0 *=1   \ *J 0 I

(3')

Since by hypothesis A(x| t) is a smoother functional than x(i), it may

sometimes be more convenient to use (2') and (3') than (2) and (3).

On the basis of our experience in [3] it seems likely that the con-

vergence of (3') will in general be more rapid than that of (3).
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THE MULTIPLIER RULE FOR ORDINARY
DIFFERENTIAL EQUATIONS

PHILIP COOPERMAN

One of the unsolved problems of% the calculus of variations is to

find a proof of the multiplier rule for the case of partial differential

equations as side conditions. The essential difficulty lies in the fact

that the theory of partial differential equations is not sufficiently

developed to allow the use of the same proecedure which worked in

the case of ordinary differential equations. Hence, it would be desir-

able to have a proof of the multiplier rule which made no appeal to

the theory of differential equations, even in the case of ordinary dif-

ferential equations. A proof of this type is the object of this paper.

Let us consider the problem of making stationary the functional

J[y] defined by

F(x, yi ■ ■ ■ yn, yl ■ ■ ■ yñ )dx
so-

under boundary conditions which need not be specified here and

under side conditions

(2) Gj(x, yi ■ - - yn, y{ - - ■ y„') = 0, j « 1, • • • , p < ».

The usual proof of the multiplier rule starts from this problem and

shows that the problem of making stationary the functional K[y, X],

(3) K[y,\] =  Ç* {F + \,Gi}dx,
_ J H

Received by the editors May 16, 1951.


