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ON SOME FUNCTIONS HOLOMORPHIC IN
AN INFINITE REGION

YU CHIA-YUNG1

S. Mandelbrojt indicated the following proposition: If a function

is holomorphic and bounded in a half-strip of the z-plane containing

the half-axis ox as a part of its central line and if this function and a

certain infinite sequence of its derivatives vanish at the origin, then

it is identically zero. The proof of this proposition is based upon a re-

sult of Mandelbrojt [l, p. 372].2 In the present paper, we consider a

function F(z) holomorphic in a region A of the z-plane defined by

x^d, \y\úg(x), where — <» <d<0 and where g(x) is a certain

positive continuous function tending to zero with 1/x. In this case

if, in A, F(z) tends to zero rapidly enough and uniformly with respect

to y as x tends to infinity, and if F(z) and a certain infinite sequence

of its derivatives vanish at the origin, then F(z) is identically zero.

In order to establish our proposition, we prove at first a lemma by

means of the following theorem of G. Valiron  [3, p. 62, §32]:

Theorem V. Let Y(X) be a real function having a first derivative

for X^Xo such that

XY'(X) XyP'(X)
lim-—= 1;       yp(X) > 1,    X ^ X0; lim-- = 0.
,—    yP(X) ~ ... 1>(A)]2

Let &(X) be an entire function and let M(r) =max|j|_r | $>(z) |. Then a

necessary and sufficient condition that
_ .
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1 The author wishes to express to Professors S. Mandelbrojt and G. Valiron his

respectful gratitude for their kind and precious suggestions and criticisms.

2 Numbers in brackets refer to the bibliography at the end of this paper.
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log M(r) ~ eY<*\       X = log r,

is that

d
v(r) ~ Y'(X)eY™-log M(r),

dX

where v(r) is the rank of the maximum term of the highest rank of the

Taylor expansion of $>(z) corresponding to the value \z\ =r.

Lemma. Let 4>(z) = X^o° <P(n)zn and let p(r) be the value of the maxi-

mum terms of \<b(n)\rn (n = 0, 1, 2, • • • ). Iß

p(r) ~ if [(log2 r)(log3 r) ■■■ (logp+i r)]1-*r       (K = const. > 0),

then for any given e>0 («<1), we have, for n sufficiently large,

| d>(n) | < exp { -exp [top(e(1-e)n>]}

and, for a sequence {nk} such that nk+i/nk tends to 1 as k tends to

infinity,

| <b(nk) | > exp { -nk exp [ü)p(e(1+,)n*)]}

where p is a positive integer and where £ = it>P(r]) is the inverse function of

*=€(!<* 8(log, Ö  • • -(logp-iÉ).

Proof. Since [3, p. Ill and 4, p. 32, chap. II]

log M(r) ~ log p.(r) ~ (log r)(log3 r + log4 r + ■ ■ - + log^+a r),

we have, by Theorem V,

v(r) ~ log [(log2 r)(log3 r) - ■ • (log^+i r)].

Considering with Valiron a polygon of Newton and using his nota-

tions, we see that

n ~ log [(logs iî„)(log3 Rn) ■ ■ ■ (logP+1 Rn)].

iop(r)) being an increasing function, it follows that

exp {exp [«„(e'1-«)")]} < e0» = eG°RiR2 ■ ■ ■ Rn

< exp {n exp [w„(e(1+«,n)]}

for n sufficiently large. The lemma will then be completely established

by Valiron's reasonings.

The following result is an immediate corollary of our lemma:

3 We write logo x = x and logt (x) =log (log*_i x), k being a positive integer and *

being sufficiently large.
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Corollary. If for a given e>0,

4>(n) = exp {—wexp [wP(e(1+t)")]}

for n sufficiently large, then we have

ß(r) á [(log* r)(logs r) ■ ■ ■ (logp+1 r)]"*'

for r sufficiently large.

Now we can prove our main theorem :

Theorem. Let g(x) be a positive continuous function defined for

x^d(— <» <d<0) decreasing to zero with 1/xforxsufficiently large and

satisfying

(1) g(x) = 0[g(x + n)} (*■->•)

for | n | sufficiently small. Denote by A the region of the z-plane defined

by x^d, \y\ ^g(x).
Let {vn} and {qn} be two complementary sequences of non-negative

integers [l] such that the upper density function [l] D'(q) of {qn}

satisfies, for q sufficiently large,

b / 1\
(2) D'(q) <-       I 0 < b = const. < — ).

(log ç)(log2 q) • - • (logp+i q)       \ 2 /

Suppose that F(z) is a function holomorphic in A and satisfying

(3) F<"»>(0) = 0

and, for a given e>0,

(4) F(z) = Of^x)]6^^!!»^)]-1-«!}      (zinA, x->°o).

Then we conclude F(z)=0.

Proof. We can evaluate the moduli of all the derivatives of Fiz)

on the half-axis ox: x = 0, y = 0. Let us put

h(x) = min [x - d, g®] [* 2 0, | * - €| ¿I *(*)]

and construct in the z-plane circles C(x):  \z — x\ ^A(x) which are

evidently situated in A. We have

n !   r Fiz)
P(n)(x) = —-4— dz (x = 0).

2ictJciz) (z - x)n+1

By hypotheses there exist positive constants A, B, E and Xo>d

such that:
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| F(z) \=A   for   z G A H {9î(z) è x0 + g(xo)} ;

\F(z) I = B[g(x)]e*» ^lt«(.)l-»-*l   for   z£Ar\ {9t(z) ^ x0 - g(x0)};

g(x) decreases for x ^ xo — g(x0);

h(x) — E   for    x ^ Xo + g(xo).

It follows that

\F^(x)\g,A-for   O^iîïo;
En

[a(x — e(x))]exp mpII»(x-<'(:i:))1_1-'i

I F^(x) I = Bn\ —-

â Bnl

[*(*)]"
[g(x - g(x))]e*pup^«<-x-'>(x»l~1~tl

[g(x + g(x))]n

= Bn\ün(x, g(x)), say, for x ja xo.

We are going to find an upper bound of Q„(x, g(x)) for x^xo — g(x0).

By (1),

n |p(je)lexp"i'1[<'(3:)1"1~'1

ün(x, g(x)) ^ Ki ---r—,- (Ki = const. > 0).
[g(*)Jn

For the sake of simplicity, consider the case g(x)=e~x. We have

Qn(x, g(x)) ^ KÎ(e-x w u*l,<-1+t)x))enx

for x^Xo — e~xo. The preceding corollary shows that

Qn(x, g(x)) ^ [Xi(log w)(log2 n) ■ ■ ■ (logp «)]"

for integral x^x0 — e~x°. But, for 0<ô < 1,

exp {-(x+ 5)'[exp oj3,(e<l+i>(I+5>)]}en(I+{)
-:-^ en     (x = 0).

exp { — x|exp up(e(1+e)x)]\enx

Hence we obtain

ttn(x, g(x)) = [K2(lo% n)(log2 n) - ■ ■ (log,, »)]»     (K2 = const. > 0)

for x 2: x0 — e~x" and for n sufficiently large. (We pass from the case

g(x) =e~x to the general case simply by replacing e~x in what precedes

by g(x).) Consequently we have

| F^(x) | g [üT3(log w)(log2 n) ■ ■ ■ (logp n)]n     (K% = const. > 0)

for x = 0 and for n sufficiently large. F(x) and its derivatives of lower
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orders are evidently also bounded for x = 0. An application of a

Mandelbrojt's result on generalized quasi-analyticity [2, chap. Ill]4

will complete immediately the proof of our theorem.

From this theorem it follows that if Fi(z) and F2(z) are functions

holomorphic in A and verifying conditions similar to (4) and if

F["n)(0) =F2>")(0) f°r a sequence {vn} defined in the above theorem,

then we have Fi(z) = F2(z).

We remark that in the case p = 1, (4) reduces to

(4) F(z) =0{[g(x)]«p![»<*>]-1-il}       (2inA;x-> °o).
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