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ON SOME FUNCTIONS HOLOMORPHIC IN
AN INFINITE REGION

YU CHIA-YUNG!

S. Mandelbrojt indicated the following proposition: If a function
is holomorphic and bounded in a half-strip of the z-plane containing
the half-axis ox as a part of its central line and if this function and a
certain infinite sequence of its derivatives vanish at the origin, then
it is identically zero. The proof of this proposition is based upon a re-
sult of Mandelbrojt [1, p. 372].2 In the present paper, we consider a
function F(z) holomorphic in a region A of the z-plane defined by
x=d, |y[ =g(x), where — o <d<0 and where g(x) is a certain
positive continuous function tending to zero with 1/x. In this case
if, in A, F(2) tends to zero rapidly enough and uniformly with respect
to y as x tends to infinity, and if F(2) and a certain infinite sequence
of its derivatives vanish at the origin, then F(2) is identically zero.
In order to establish our proposition, we prove at first a lemma by
means of the following theorem of G. Valiron [3, p. 62, §32]:

THEOREM V. Let Y(X) be a real function having a first derivative
for X =X, such that
Xy'(X)

im-X—Y,@=1- Y(X) =1, X = Xo; lim ——— =
e W(X) e (76 )E

Let ®(X) be an entire function and let M(r) =max;; ., |<I’(z) | .Then a
necessary and sufficient condition that

.
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! The author wishes to express to Professors S. Mandelbrojt and G. Valiron his
respectful gratitude for their kind and precious suggestions and criticisms.

2 Numbers in brackets refer to the bibliography at the end of this paper.
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log M(r) ~ e¥ @, X =logr,
is that

d
v(r) ~ V'(X)e¥ © ~ X log M(r),

where v(r) is the rank of the maximum term of the highest rank of the
Taylor expansion of ®(z) corresponding to the value ]z| =r.

LeMMA. Let ®(z) = D g ¢(n)z" and let u(r) be the value of the maxi-
mum terms of |¢(n)|r* (n=0,1,2, - .). If

u(r) ~ K[(logs 7)(logs ‘r) «++ (logps1r)Jler (K = const. > 0),
then for any given €>0 (e<1), we have, for n sufficiently large,
|4>(n)| < exp {—exp [wy(e0-m]}

and, for a sequence {mi} such that mii1/mi tends to 1 as k tends to
infinity,

l & (ni) l > exp {—nk exp [wp(e(l+¢)nk)]}

where p 1s a positive integer and where £ =w,y(n) s the inverse function of
n==£(log £)(log: £) - - -(logp-1 £).

Proor. Since [3, p. 111 and 4, p. 32, chap. II]
log M(r) ~log u(r) ~ (log r)(logs 7 + loga r + - - - + logpsa 1),
we have, by Theorem V,
v(r) ~ log [(logs r)(logs 7) - - - (logps nl.

Considering with Valiron a polygon of Newton and using his nota-
tions, we see that

n ~ log [(logs R.)(logs R,) - - - (1ogp+1 Ra)].
w,(n) being an increasing function, it follows that
exp {exp [wy(e39")]} < % = e%RRy--- R,
<exp {n exp [wp(e0+")]}

for n sufficiently large. The lemma will then be completely established
by Valiron's reasonings.
The following result is an immediate corollary of our lemma:

3 We write logo x =x and log: (x) =log (logx—1 x), k being a positive integer and x
being sufficiently large.
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COROLLARY. If for a given €>0,
¢(n) = exp {—n exp [wy(e+Om)]}
for n sufficiently large, then we have
w(r) = [(loga r)(logs 7) - - - (logps 7)J'os "
for r sufficiently large.
Now we can prove our main theorem:

THEOREM. Let g(x) be a positive continuous function defined for
x2d (— » <d<0) decreasing to zero with 1/x for x sufficiently large and
satisfying

(1 g(x) = Olg(x + )] (x— @)

for In| sufficiently small. Denote by A the region of the z-plane defined
by x2d, |y| Sg(x).

Let { v,.} and {q,,} be two complementary sequences of non-negative
integers [1] such that the upper density function [1] D*(q) of {ga}
satisfies, for q sufficiently large,

. b 1
(2) D(g < Toz D08 2) - (oo ) (0 < b = const. < ?)

Suppose that F(z) 1s a function holomorphic in A and satisfying

3) Few(0) =0
and, for a given €>0,
4 F(z) = Of [g(x) [ et 0@ ™79} (zin A, x— ).

Then we conclude F(z)=0.

" Proor. We can evaluate the moduli of all the derivatives of F(2)
on the half-axis ox: x=0, y=0. Let us put

h(x) = min [z — d, g(¥)] (20, |2 —¢] = g@]

and construct in the z-plane circles C(x): |z—x| <h(x) which are
evidently situated in A. We have

n! F(2)
F™(x) = — — 3 (z 2 0).
2rid ¢(n (3 — x)mH?

By hypotheses there exist positive constants 4, B, E and x,>d
such that:
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IF(z)l S A4 for 2€EAN {RE) < 20+ g(20)};

|F@z)| < Blg(x) ] sstlleen ™™ for s € AN {R(z) 2 %0 — g(xo)};
g(x) decreases for x = xo — g(x0);

h(x) Z E for x = x4+ g(x0).

It follows that

nl
| F(a) | < A-E for 0= 2= x;

[g(x — g(x))]e=» wpl lo (=g (201174
[#(z)]
< gy L85 = @] oo
[e(= + g(2)]"
= Bn!Q.(x, g(x)), say, for x = x,.

| F™(x)| < Bn!

We are going to find an upper bound of Q.(x, g(x)) for x = x— g(x0).
By (1),

» [g(x) ]oxp eplle@171 74
(e, 1) 5 K3 2

[s(x)]"
For the sake of simplicity, consider the case g(x) =e—=. We have

(%, g(%)) S Ki(e® o vp(e@ran)gnz

(K, = const. > 0).

for x =2xo—e%. The preceding corollary shows that
Qu(x, g(%)) = [Ki(log n)(logs 7) - - - (log, n)]
for integral x = xy—e~%. But, for 0<6 <1,
exp { —(x + 8)[exp w (o @tD)) ]} gn(=+d)

exp { —x[exp w,(e+07) ]} ens

et (x=0).

Hence we obtain
Qu(, g(2)) < [Ks(log n)(logz m) - - - (log, m)]* (K = const. > 0)

for xZxo—e* and for n sufficiently large. (We pass from the case
g(x) =e™= to the general case simply by replacing ¢~* in what precedes
by g(x).) Consequently we have

IF(")(x)I < [Ks(log n)(logs n) - - - (log, »)]* (K3 = const. > 0)

for x20 and for # sufficiently large. F(x) and its derivatives of lower
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orders are evidently also bounded for x=0. An application of a
Mandelbrojt’s result on generalized quasi-analyticity [2, chap. III]¢
will complete immediately the proof of our theorem.

From this theorem it follows that if Fi(z) and F(2) are functions
holomorphic in A and verifying conditions similar to (4) and if
F¢(0) = F¢(0) for a sequence {v,} defined in the above theorem,
then we have Fi(z) = F,(3).

We remark that in the case p=1, (4) reduces to

(4) F(z) = Of [g(x)]exete@1 =9} (5in A; 4 — ).
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¢ For the case p=1 of the mentioned result, see [1, p. 372].



