GENUS CHANGE IN INSEPARABLE EXTENSIONS OF FUNCTION FIELDS

JOHN TATE

1. A substitute for the trace in inseparable extensions of degree p. Let k be any field of characteristic p>0, and suppose that K is an inseparable extension of k of degree p. If we select any fixed generator α of K over k and express the generic element $\xi \in K$ in terms of α :

(1)
$$\xi = x_0 + x_1 \alpha + \cdots + x_{n-1} \alpha^{p-1}, \qquad x_i \in k,$$

we can define a nontrivial k-linear map S_{α} of K onto k by putting

$$(2) S_{\alpha}(\xi) = x_{n-1}.$$

Since α satisfies an equation of the form X^p-a over k, we have, for $0 \le \nu \le p-1$,

$$\xi \alpha^{p-1-\nu} = x_0 \alpha^{p-1-\nu} + \cdots + x_{\nu} \alpha^{p-1} + x_{\nu+1} \alpha + \cdots + x_{p-1} \alpha^{p-1-\nu-1}.$$

Therefore $x_p = S_{\alpha}(\xi \alpha^{p-1-p})$ and the formula

(3)
$$\xi = \sum_{\nu=0}^{p-1} S_{\alpha} \left(\xi \alpha^{p-1-\nu} \right) \alpha^{\nu}$$

holds for all $\xi \in K$.

 S_{α} is a particularly convenient substitute for the trace from K to k, which is identically 0. Of course S_{α} , although not completely arbitrary, is nevertheless noninvariant, and the question arises as to how S_{α} transforms if we replace α by another generator β . This question can be more precisely stated if we recall that since K is a field and S_{α} is nontrivial, any k-linear map S of K into k can be expressed in the form $S(\xi) = S_{\alpha}(\xi\gamma)$, where γ is some element of K uniquely determined by S. Our question is therefore: How does one compute, in terms of α and β , the element γ for which $S_{\beta}(\xi) = S_{\alpha}(\xi\gamma)$?

The answer is most conveniently expressed in terms of derivations. A derivation in a ring is a map $x \rightarrow Dx$ of the ring into itself with the properties D(x+y) = D(x) + D(y) and D(xy) = x(Dy) + (Dx)y. The rule $D(x^y) = yx^{y-1}Dx$ follows by induction if the ring is commutative. The ordinary formal differentiation $F(X) \rightarrow F'(X)$ is a derivation in the ring k[X] of polynomials in one letter X over our field k. It maps a principal ideal generated by a polynomial of the form X^p-a into itself because $((X^p-a)F(X))'=(X^p-a)F'(X)$. The

kernel of the homomorphism $F(X) \to F(\alpha)$ of k[X] onto K is an ideal of this type. Therefore, the formal differentiation in k[X] induces a well-defined derivation in K which we can denote by D_{α} . Namely, if $\xi = F(\alpha)$ is any expression of an element $\xi \in K$ as a polynomial in α with coefficients in k, then $D_{\alpha}\xi = F'(\alpha)$. Especially, if ξ is the element in (1), then

(4)
$$D_{\alpha}\xi = x_1 + 2x_2\alpha + \cdots + (p-1)x_{p-1}\alpha^{p-2}.$$

It is clear that $D_{\alpha}\xi=0$ if and only if $\xi\in k$, and that D_{α} is k-linear. One relationship between D_{α} and S_{α} is

$$S_{\alpha}(D_{\alpha}(\xi)) = 0$$

for all $\xi \in K$, as one sees from a glance at (1), (2), and (4). Somewhat more interesting is the following lemma.

LEMMA 1.
$$S_{\alpha}(\xi^{p-1}D_{\alpha}\xi) = (D_{\alpha}\xi)^{p}$$
 for all $\xi \in K$.

REMARK. Since $\xi^p \in k$, an equivalent statement is:

$$S_{\alpha}\left(\frac{D_{\alpha}\xi}{\xi}\right) = \left(\frac{D_{\alpha}\xi}{\xi}\right)^{p}$$
 for all $\xi \neq 0$ in K .

In other words the function S_{α} of a "logarithmic derivative" equals the pth power of the logarithmic derivative.¹

PROOF. Let R be the set of those $\xi \in K$ for which the statement is true. The nonzero elements of R form a multiplicative group because, according to the remark above, they comprise the kernel of the homomorphism $\xi \to S_{\alpha}((D_{\alpha}\xi)/\xi) - ((D_{\alpha}\xi)/\xi)^p$ of the multiplicative group of K into the additive group of k.

If $\xi \in R$, then $\xi+1 \in R$. Indeed, since $D_{\alpha}(\xi+1) = D_{\alpha}\xi$ we have only to show that $S_{\alpha}((\xi+1)^{p-1}D_{\alpha}\xi) = S_{\alpha}(\xi^{p-1}D_{\alpha}\xi)$. This is true according to rule (5) because $((\xi+1)^{p-1}-\xi^{p-1})D_{\alpha}\xi$ is a sum of terms of the form $\xi^{\nu}D_{\alpha}\xi$ with $0 \le \xi \le p-2$, which can be "integrated": $\xi^{\nu}D_{\alpha}\xi = D_{\alpha}(\xi^{\nu+1}/\nu+1)$. Therefore R is closed under addition, because if $\xi \in R$, and $\eta \ne 0$, $\eta \in R$, then $\xi + \eta = \eta(\eta^{-1}\xi+1) \in R$.

It is obvious that $k \subset R$ and $\alpha \in R$. We have proved that R is a subfield of K which contains k and α . Therefore R = K as contended.

Our question can now be answered.

¹ Since $D_{\alpha}^{p-1}(\xi) = (p-1)!x_{p-1} = -x_{p-1} = -S_{\alpha}(\xi)$, our lemma can be viewed as a special case of Theorem 15 of N. Jacobson's paper Abstract derivations and Lie algebras (Trans. Amer. Math. Soc. vol. 42 (1937)), where the converse statement—that the above-mentioned property characterizes the elements which are logarithmic derivatives—is also proved.

THEOREM 1. If α and β are two generators of K over k, then $S_{\beta}(\xi) = S_{\alpha}(\xi(D_{\alpha}\beta)^{1-p})$ for all $\xi \in K$.

PROOF. Since both sides are k-linear functions of ξ , it suffices to prove the statement for the special cases $\xi = \beta^{\nu}$, $0 \le \nu \le p - 1$. Multiplying through by $(D_{\alpha}\beta)^{\nu} \in k$, we must show

$$(D_{\alpha}\beta)^{p}S_{\beta}(\beta^{\nu}) = S_{\alpha}(\beta^{\nu}D_{\alpha}\beta), \qquad 0 \leq \nu \leq p-1.$$

For $\nu < p-1$, $\beta^{\nu}D_{\alpha}\beta = D_{\alpha}(\beta^{\nu+1}/\nu+1)$. Hence, by (5), the right side is 0, as is the left. For $\nu = p-1$ the left side is $(D_{\alpha}\beta)^p$, as is the right side according to Lemma 1.

2. Application to the genus change in function fields. There is an interesting application of Theorem 1 to the case in which k is an algebraic function field in one variable with constant field k_0 . Then K is also an algebraic function field of one variable over a certain constant field K_0 which is a finite extension of k_0 . We shall derive an analogue of Zeuthen's formula relating the genus G of K to the genus g of k, the most interesting aspect of which is that it shows that the genus change G-g is divisible by (p-1)/2. The general facts about function fields which we presuppose are explained in [1] and [2].

If α is a generator of K over k, then any repartition (valuation vector) \mathfrak{X} of K can be written uniquely in the form

(6)
$$\mathfrak{X} = \mathfrak{x}_0 + \mathfrak{x}_{1}\alpha + \cdots + \mathfrak{x}_{p-1}\alpha^{p-1}$$

where the coefficients \mathfrak{x}_i are repartitions of k. The k-linear map S_{α} of K onto k which we have discussed in §1 can therefore be extended to a k-linear map of the space of repartitions of K onto the space of repartitions of k by defining

$$S_{\alpha}(\mathfrak{X}) = \mathfrak{x}_{p-1}.$$

This extended map S_{α} is continuous in the sense that to any divisor \mathfrak{a} of k there exists a divisor \mathfrak{A} of K such that $\mathfrak{A} \mid \mathfrak{X}$ implies $\mathfrak{a} \mid S_{\alpha}(\mathfrak{X})$. Therefore, if ω is a nontrivial differential of k and we define $\Phi(\mathfrak{X}) = \omega(S_{\alpha}(\mathfrak{X}))$, then Φ is a nontrivial k_0 -linear map of the space of repartitions of K onto k_0 which vanishes on elements of K, and on all repartitions of K which are divisible by a certain fixed divisor of K. Such a map Φ is a differential of K in case $K_0 = k_0$; in any case we can easily replace Φ by a true differential Ω of K. The formula we are looking for will then result from a comparison of the divisors of Ω and ω .

To define Ω we need the following abstract lemma.

LEMMA 2. Let k_0 be a field, K_0 a finite extension of k_0 , and let S_0 be a

fixed nontrivial k_0 -linear map of K_0 into k_0 . Then if X is any vector space over K_0 (therefore also over k_0) and Φ is any k_0 -linear map of X into k_0 , there exists a uniquely determined K_0 -linear map Ω of X into K_0 such that $\Phi = S_0\Omega$; i.e. $\Phi(\mathfrak{X}) = S_0(\Omega(\mathfrak{X}))$ for all $\mathfrak{X} \subseteq X$.

PROOF. If such a map Ω did exist, we would have, for each $\mathfrak{X} \subset X$,

(8)
$$S_0(\xi\Omega(\mathfrak{X})) = S_0(\Omega(\xi\mathfrak{X})) = \Phi(\xi\mathfrak{X})$$

for all $\xi \in K_0$. The right-hand side, viewed as a function of ξ , is a k_0 -linear map of K_0 into k_0 . Therefore, since S_0 is nontrivial, there does exist a unique element $\Omega(\mathfrak{X}) \in K_0$ which makes the left-hand side of (8) equal to the right. Thus, (8) defines a function $\Omega(\mathfrak{X})$. This function has the property $\Phi = S_0 \Omega$, as we see by putting $\xi = 1$ in (8). It is K_0 -linear because we can prove readily from the definition that

$$S_0(\xi\Omega(\alpha\mathfrak{X}+\beta\mathfrak{Y}))=S_0(\xi(\alpha\Omega(\mathfrak{X})+\beta\Omega(\mathfrak{Y})))$$

for all $\xi \in K_0$, for any α , $\beta \in K_0$, and any \mathfrak{X} , $\mathfrak{Y} \in X$. This proves the lemma.

Returning to the function fields, let S_0 be an arbitrary but fixed nontrivial k_0 -linear map of K_0 into k_0 , and define Ω to be the K_0 -linear map of the space of repartitions of K into K_0 for which

$$(9) S_0(\Omega(\mathfrak{X})) = \Phi(\mathfrak{X}) = \omega(S_\alpha(\mathfrak{X})).$$

Then Ω is a nontrivial differential of K which we can use as a substitute for the cotrace of ω from k to K. The corresponding substitute for the different of K over k is the divisor \mathfrak{D}_{α} of K such that

(10)
$$(\Omega) = (\operatorname{Con}_{k/K}(\omega))\mathfrak{D}_{\alpha}$$

where (Ω) and (ω) are the divisors of Ω and ω in k and K.

The computation of \mathfrak{D}_{α} is a purely local problem. Above each place \mathfrak{p} of k there lies only one place \mathfrak{P} of K. This follows for example from the fact that since $K^p \subset k$, the ordinal number function at any \mathfrak{P} above \mathfrak{p} is determined up to a constant factor by the ordinal number function at \mathfrak{p} . If $K_{\mathfrak{P}}$ and $k_{\mathfrak{p}}$ are the respective completions, then $(K_{\mathfrak{P}}/k_{\mathfrak{p}}) = p$ since the global degree p is the sum of the local degrees above each \mathfrak{p} of k. Viewing our generator α of K over k as an element of $K_{\mathfrak{P}}$, we have $K_{\mathfrak{P}} = k_{\mathfrak{p}}(\alpha)$. If $S_{\alpha}^{\mathfrak{P}}$ is the corresponding $k_{\mathfrak{p}}$ -linear map of $K_{\mathfrak{P}}$ onto $k_{\mathfrak{p}}$, then the local description of the repartition map S_{α} is

$$(S_{\alpha}(\mathfrak{X}))_{\mathfrak{p}} = S_{\alpha}^{\mathfrak{P}}(\mathfrak{X}_{\mathfrak{P}})$$

for all repartitions $\mathfrak{X} = (\mathfrak{X}_{\mathfrak{P}})$ of K. It follows, just as in the case of the ordinary different, that $\nu_{\mathfrak{P}}(\mathfrak{D}_{\alpha})$ is the greatest rational integer such that:

 $\xi \in K_{\mathfrak{P}}$, $\nu_{\mathfrak{P}}(\xi) \geq -\nu_{\mathfrak{P}}(\mathfrak{D}_{\alpha})$ implies $\nu_{\mathfrak{P}}(S_{\alpha}^{\mathfrak{P}}(\xi)) \geq 0$, where ν is the ordinal number function.

If e and f are the ramification index and residue class field degree of \mathfrak{P} over \mathfrak{p} , then $ef = (K_{\mathfrak{P}}/k_{\mathfrak{p}}) = p$. Thus there are only two possibilities: e = 1, f = p, and e = p, f = 1. In both cases, the ring of integers \mathfrak{D} of $K_{\mathfrak{P}}$ has an integral basis (minimal basis) over the ring of integers \mathfrak{v} of $k_{\mathfrak{P}}$ consisting of the powers of one element $\tau \in K_{\mathfrak{P}}$:

$$\mathfrak{D} = \mathfrak{o} + \mathfrak{o}\tau + \cdots + \mathfrak{o}\tau^{p-1}.$$

For example, in the first case we can take τ to be any unit in $K_{\mathfrak{P}}$, the residue class of which generates the residue class field extension; in the second case we can take τ to be any local uniformizing parameter in $K_{\mathfrak{P}}$. Let τ be any such element of $K_{\mathfrak{P}}$, and let D_{τ} be the derivation with respect to τ in the p-extension $K_{\mathfrak{P}}/k_{\mathfrak{P}}$.

LEMMA 3.
$$\nu_{\mathfrak{P}}(\mathfrak{D}_{\alpha}) = \nu_{\mathfrak{P}}((D_{\tau}\alpha)^{1-p}).$$

PROOF. By formula (3) and Theorem 1 we have for $\xi \in K_{\mathfrak{P}}$:

$$\xi(D_{\tau}\alpha)^{1-p} = \sum_{\nu=0}^{p-1} S_{\tau}(\xi(D_{\tau}\alpha)^{1-p}\tau^{p-1-\nu})\tau^{\nu} = \sum_{\nu=0}^{p-1} S_{\alpha}^{\Re}(\xi\tau^{p-1-\nu})\tau^{\nu}.$$

If $\nu_{\mathfrak{P}}(\xi) \geq -\nu_{\mathfrak{P}}((D_{\tau}\alpha)^{1-p})$, then the left side is integral and consequently so are all the coefficients on the right, in particular the last, which is $S^{\mathfrak{P}}_{\alpha}(\xi)$. On the other hand, if ξ is some element with $\nu_{\mathfrak{P}}(\xi) = -\nu_{\mathfrak{P}}((D_{\tau}\alpha)^{1-p}) - 1$, then the left side is not integral and consequently one of the coefficients $S^{\mathfrak{P}}_{\alpha}(\xi\tau^{p-1-i})$ is not integral. Therefore $\xi\tau^{p-1-i}$ is an element of order not less than $-\nu_{\mathfrak{P}}((D_{\tau}\alpha)^{1-p}) - 1$, the $S^{\mathfrak{P}}_{\alpha}$ of which is not integral. Thus we have shown that $\nu_{\mathfrak{P}}((D_{\tau}\alpha)^{1-p})$ has the property characterizing $\nu_{\mathfrak{P}}(\mathfrak{D}_{\alpha})$ stated above.

Theorem 2. The genera G and g of $K = k(\alpha)$ and k are related by the formula

$$2G - 2 = p^{1-n}(2g - 2) + (1 - p) \sum_{\mathfrak{P}} \nu_{\mathfrak{P}}(D_{\tau_{\mathfrak{P}}} \alpha) \deg \mathfrak{P}$$

where $\tau_{\mathfrak{P}}$ is the τ of the preceding paragraphs, and n is defined by $(K_0/k_0) = p^n$.

PROOF. The term on the left equals deg (Ω) . The first term on the right equals deg $(Con_{k/K}(\omega))$. The sum on the right equals deg \mathfrak{D}_{α} according to Lemma 3. Therefore our theorem simply states the equality of the degrees in formula (10).

COROLLARY 1. If k is a field of algebraic functions of one variable of

characteristic p>0 and genus g, and K is a totally inseparable finite extension of k of genus G, then G-g is divisible by (p-1)/2.

PROOF. Since the extension K/k can be broken into steps of degree p, it is enough to prove the statement in case (K/k) = p. In this case, upon multiplying the formula of the preceding theorem through by p^n and reading it modulo (p-1), we obtain

$$2G-2\equiv 2g-2 \pmod{(p-1)}$$
.

REMARK. A simple example of the situation we are discussing is the case where $k = k_0(x, y)$ is a hyperelliptic field generated by an equation of the form $y^2 = x^p - a$ ($p \neq 2$), of genus (p-1)/2. Upon adjunction of $a^{1/p}$ we obtain a rational field of genus 0. Corollary 1 shows that this genus drop is typical.

COROLLARY 2. If k is a field of algebraic functions of one variable of characteristic p>0 and genus g<(p-1)/2, then k is what Artin [2] has called a "conservative" field. That is, the genus of k is invariant under all constant field extensions.

PROOF. This follows immediately from Corollary 1 and the well known facts: (a) that if the genus changes under any constant field extension, the change occurs already in a finite purely inseparable constant extension; (b) that in the latter case the genus can only decrease, never increase; (c) the genus is always ≥ 0 .

REMARK. Fact (b) above follows at once from Theorem 2 because in the case of a constant field extension we have $n \ge 1$ and can take $\alpha \in K_0$, so that $\nu_{\mathfrak{P}}(D_{r\mathfrak{P}}\alpha) \ge 0$ for all \mathfrak{P} .

It is perhaps of some interest to see how the numbers $\nu_{\mathfrak{P}}(D_{r_{\mathfrak{P}}}\alpha)$ deg \mathfrak{P} in the formula of Theorem 2 may be computed in the ground field k in terms of the element $a=\alpha^p \in k$, the pth root of which is extracted to obtain K. This is easily done.

Proposition. Let \mathfrak{p} be the place of k below \mathfrak{P} . Let

$$r_{\mathfrak{p}} = \operatorname{Max}_{x \in k_{\mathfrak{p}}} \{ \nu_{\mathfrak{p}}(a - x^{p}) \}.$$

Then

$$p^{n}\nu_{\mathfrak{P}}(D_{r_{\mathfrak{P}}}\alpha)\,\deg\,\mathfrak{P}\,=\,\,\begin{cases} r_{\mathfrak{p}}\,\deg\,\mathfrak{p}, & \text{if }p\mid r_{\mathfrak{p}}\\ (r_{\mathfrak{p}}\,-\,1)\,\deg\,\mathfrak{p}, & \text{if }p\nmid r_{\mathfrak{p}}.\end{cases}$$

PROOF. Since $K_{\mathfrak{P}} = k_{\mathfrak{p}}(\alpha) = k_{\mathfrak{p}} \ (a^{1/p})$, and $(K_{\mathfrak{P}}/k_{\mathfrak{p}}) = p$, a is not a pth power in $k_{\mathfrak{p}}$. Therefore $r_{\mathfrak{p}} < \infty$. Let b be an element of $k_{\mathfrak{p}}$ such that $r_{\mathfrak{p}} = \nu_{\mathfrak{p}}(a - b^p)$.

Case 1. If $p | r_p$, let $r_p = sp$. Let t be a local uniformizing parameter

in $k_{\mathfrak{p}}$, and put $\tau = (\alpha - b)t^{-s} \in K_{\mathfrak{P}}$. Then $\tau^p = (a - b^p)t^{-sp}$ is a unit in $k_{\mathfrak{p}}$. The residue class of this unit is not a pth power of a residue class in $k_{\mathfrak{p}}$. Otherwise, if $c \in k_{\mathfrak{p}}$, such that $c^p \equiv (a - b^p)t^{-sp}$ (mod \mathfrak{p}), then the pth power, $b^p + t^{sp}c^p$, would be a better approximation to a than b^p . Therefore we have f = p, e = 1 in this case, and the powers of τ are an integral basis for \mathfrak{D} over \mathfrak{o} . $D_{\tau}\alpha = (D_{\alpha}\tau)^{-1} = t^s$ shows that $v_{\mathfrak{P}}(D_{\tau}\alpha) = s$ and therefore $v_{\mathfrak{P}}(D_{\tau}\alpha)p^n$ deg $\mathfrak{P} = sp$ deg $\mathfrak{p} = r_{\mathfrak{p}}$ deg \mathfrak{p} .

Case 2. If $p \nmid r_{\mathfrak{p}}$, solve the diophantine equation $r_{\mathfrak{p}}l - pm = 1$. Let t be a local uniformizing parameter in $k_{\mathfrak{p}}$, and put $\tau = (\alpha - b)^{l}t^{-m} \in K_{\mathfrak{P}}$. Then $\tau^{p} = (a - b^{p})^{l}t^{-mp}$ has ordinal number $r_{\mathfrak{p}}l - mp = 1$ in $k_{\mathfrak{p}}$. Therefore e = p, f = 1, τ is a local uniformizing parameter in $K_{\mathfrak{P}}$, and the powers of τ are an integral basis. $D_{\alpha}\tau = l(\alpha - b)^{l-1}t^{-m} = l(\alpha - b)^{-1}\tau$ shows that $D_{\tau}\alpha = (D_{\alpha}\tau)^{-1} = l^{-1}(\alpha - b)\tau^{-1}$ has ordinal number $r_{\mathfrak{p}}$ in $K_{\mathfrak{P}}$. Therefore $p_{\mathfrak{P}}(D_{\tau}\alpha)p^{n}$ deg $\mathfrak{P} = (r_{\mathfrak{p}}-1)$ deg \mathfrak{p} .

REFERENCES

- 1. C. Chevalley, Introduction to the theory of algebraic functions of one variable, Mathematical Surveys, no. 6, American Mathematical Society, 1951. (Especially chapters I, III, IV, and VI.)
- 2. E. Artin, Algebraic numbers and algebraic functions. I, Notes, New York University, Summer 1951. (Especially chapters 13, 15, and 17.)

PRINCETON UNIVERSITY