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1. A substitute for the trace in inseparable extensions of degree p.

Let k be any field of characteristic p>0, and suppose that K is an

inseparable extension of k of degree p. If we select any fixed generator

a of K over k and express the generic element ££i£ in terms of a:

(1) £ = xo + xva + • ■ ■ + Zp-ia"-1, x¿ £ k,

we can define a nontrivial ¿-linear map Sa of K onto k by putting

(2) 5.(0 = sP-i.

Since a satisfies an equation of the form Xp — a over k, we have, for

O^v^p-l,

¿a"-1-' = atoa""1-' + • • • + W1 + x„+ia + • • • + Sp-iffa"-1-'-1.

Therefore x^Saféa"-1-") and the formula

(3) {«Ei.feH-y

holds for all ¿G7C.
5a is a particularly convenient substitute for the trace from K to

k, which is identically 0. Of course S«, although not completely

arbitrary, is nevertheless noninvariant, and the question arises as to

how Sa transforms if we replace a by another generator ß. This ques-

tion can be more precisely stated if we recall that since K is a field

and S a is non trivial, any fe-linear map S of K into k can be expressed

in the form S(^) =Sa(l¡y), where y is some element of K uniquely de-

termined by S. Our question is therefore: How does one compute, in

terms of a and ß, the element 7 for which Sß(l-) = Sa($iy) ?

The answer is most conveniently expressed in terms of deriva-

tions. A derivation in a ring is a map x—*Dx of the ring into itself with

the properties D(x+y) =D(x)+D(y) and D(xy) =x(Dy) + (Dx)y.

The rule D(x") =vx"~1Dx follows by induction if the ring-is commuta-

tive. The ordinary formal differentiation F(X)—*F'(X) is a deriva-

tion in the ring k[X] of polynomials in one letter X over our field k.

It maps a principal ideal generated by a polynomial of the form

X'-a   into   itself   because   ((Xp-a)F(X))'= (Xp-a)F'(X).   The
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kernel of the homomorphism F(X)—>F(a) of k[X] onto K is an ideal

of this type. Therefore, the formal differentiation in k[X] induces a

well-defined derivation in K which we can denote by Da. Namely, if

¡i = F(a) is any expression of an element ££7C as a polynomial in a

with coefficients in k, then Da^ = F'(a). Especially, if £ is the element

in (1), then

(4) Z>„£ = Xl + 2x2a H-+ (p - I)**-!«"-2.

It is clear that 7>a£ = 0 if and only if £6fe, and that Da is fe-linear.

One relationship between Da and Sa is

(5) Sa(Da(!0) - 0

for all ££7i, as one sees from a glance at (1), (2), and (4). Somewhat

more interesting is the following lemma.

Lemma 1. S^-'T)«?) = (DaÇ)pfor allCGK.

Remark. Since £p£fe, an equivalent statement is:

/7Ja£\      /¿UV
Sal-) = Í-j for all í 5¿ 0 in K.

In other words the function Sa of a "logarithmic derivative" equals the

pth power of the logarithmic derivative.1

Proof. Let R be the set of those ££/£ for which the statement is

true. The nonzero elements of R form a multiplicative group because,

according to the remark above, they comprise the kernel of the

homomorphism £—»So ((7) „£)/£) — ((7>a£)/£)p of the multiplicative

group of K into the additive group of fe.

If £62?, then £ + 16-7?. Indeed, since 7>a(£ + l) =7J>a£ we have only

to show that Sa((^ + \)p-lD^) = S«(£p-17J>(t£). This is true according

to rule (5) because ((£ + l)p_1 —£p_1)^->a£ is a sum of terms of the form

£"T>„£ with 0^£g£-2, which can be "integrated": £'7>a£

= 7>a(£"+1/ï'+l). Therefore R is closed under addition, because if

£<ER, and tj^O, ijER, then£+7? = 77(r;-1£+l)6i?.

It is obvious that kCR and a£i?. We have proved that R is a sub-

field of K which contains fe and a. Therefore R = K as contended.

Our question can now be answered.

'Since Da~l(£) — {p — l)!*p_i= — xp_i= — S«(£). our lemma can be viewed as a

special case of Theorem 15 of N. Jacobson's paper Abstract derivations and Lie algebras

(Trans. Amer. Math. Soc. vol. 42 (1937)), where the converse statement—that the

above-mentioned property characterizes the elements which are logarithmic deriva-

tives—is also proved.
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Theorem 1. If a and ß are two generators of K over fe, then Sß(£)

= Sa(Z(Daß)l-p) for aineK.

Proof. Since both sides are fe-linear functions of £, it suffices to

prove the statement for the special cases £ = j8', O^v^p — 1. Multi-

plying through by (7)a(3)pEfe, we must show

(Daß)pSß(ß")   =  Sa(ß"Daß), 0 g  V g P -   1.

For j-</>-1, j3'Da|3 = 7>a(i3,'+V>' + l). Hence, by (5), the right side is

0, as is the left. For v = p — 1 the left side is (DJß)p, as is the right side

according to Lemma 1.

2. Application to the genus change in function fields. There is an

interesting application of Theorem 1 to the case in which fe is an alge-

braic function field in one variable with constant field fe0. Then K is

also an algebraic function field of one variable over a certain constant

field Ko which is a finite extension of fe0. We shall derive an analogue

of Zeuthen's formula relating the genus G of K to the genus g of fe,

the most interesting aspect of which is that it shows that the genus

change G—g is divisible by (p —1)/2. The general facts about func-

tion fields which we presuppose are explained in [l] and [2].

If a is a generator of K over fe, then any repartition (valuation

vector) H of K can be written uniquely in the form

(6) 2   =   ïo +  f ia +   •   ■   •   +  ïp-!«"-1

where the coefficients r¿ are repartitions of fe. The fe-linear map Sa

of K onto fe which we have discussed in §1 can therefore be extended

to a fe-linear map of the space of repartitions of K onto the space of

repartitions of fe by defining

(7) sa(X) = r^i.

This extended map Sa is continuous in the sense that to any divisor

a of fe there exists a divisor 21 of K such that 31 |X implies a\ Sa(%).

Therefore, if w is a nontrivial differential of fe and we define <$(£)

= w(Sa(3Q), then $ is a nontrivial feo-linear map of the space of re-

partitions of K onto feo which vanishes on elements of K, and on

all repartitions of K which are divisible by a certain fixed divisor of

K. Such a map 4> is a differential of K in case K0 — k0 ; in any case we

can easily replace <ï> by a true differential A of K. The formula we are

looking for will then result from a comparison of the divisors of 0

and w.

To define fi we need the following abstract lemma.

Lemma 2. Let ko be afield, K0 a finite extension of fe0, and let S0 be a
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fixed nontrivial ko-linear map of Ko into fe0. Then if X is any vector

space over K0 (therefore also over ko) and $ is any ko-linear map of

X into ko, there exists a uniquely determined Ko-Unear map O of X into

Ko such that i> = 50ß; i.e. $(3E) =50(O(ï)) for all HEX.

Proof. If such a map ß did exist, we would have, for each XEX,

(8) 5o«a(ï)) = So(aftï)) = *(#)

for all £GisTo. The right-hand side, viewed as a function of £, is a

feo-linear map of Ka into fe0. Therefore, since So is nontrivial, there

does exist a unique element fl(36) £2f o which makes the left-hand side

of (8) equal to the right. Thus, (8) defines a function fl(3Ê). This func-

tion has the property i> = 50ß, as we see by putting £ = 1 in (8). It is

Tío-linear because we can prove readily from the definition that

So(£i2(a* + ßW) = So({(«Û(ï) + 00(g))))

for all £G7To. for any a, ß£.Ko, and any 26, tyÇzX. This proves the

lemma.

Returning to the function fields, let S0 be an arbitrary but fixed

nontrivial fe0-linear map of K0 into feo, and define 0 to be the XVlinear

map of the space of repartitions of K into Ko for which

(9) 50(Q(Ï)) = HI) = «(5-(ï)).

Then fi is a nontrivial differential of K which we can use as a sub-

stitute for the cotrace of w from fe to K. The corresponding substitute

for the different of K over fe is the divisor ©„ of K such that

(10) (0) = (Conk/K («))©«

where (Q) and («) are the divisors of fl and u in fe and 7C.

The computation of 35a is a purely local problem. Above each

place p of fe there lies only one place 'iß of K. This follows for example

from the fact that since Kp(Zk, the ordinal number function at any ty

above p is determined up to a constant factor by the ordinal number

function at p. If Ky and k9 are the respective completions, then

(Ky/k9) =p since the global degree p is the sum of the local degrees

above each p of fe. Viewing our generator a of K over fe as an element

of Ky, we have Ky = k9(a). If 5* is the corresponding ferlinear map

of K$ onto fep, then the local description of the repartition map Sa

is

(11) (Sa(X))p = si (3E»)

for all repartitions ï = (ïç) of ÜT. It follows, just as in the case of the

ordinary different, that ?$(£)<») *s iAe greatest rational integer such that:
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££-£$, »*$(£) è — v%(S)a) implies »^(5*(£))è0, where j> is the ordinal

number function.

If e and / are the ramification index and residue class field degree

of ^ over p, then e/= (Ky/k9) =p. Thus there are only two possibili-

ties: e = l, f = p, and e=p, f=i. In both cases, the ring of integers

O of Ky has an integral basis (minimal basis) over the ring of

integers P of fep consisting of the powers of one element rETTc:

O = o + ot + • ■ • + or"-1.

For example, in the first case we can take r to be any unit in Ky, the

residue class of which generates the residue class field extension; in

the second case we can take r to be any local uniformizing parameter

in K<$. Let r be any such element of K<$, and let Dr be the derivation

with respect to r in the ¿»-extension TTç/fep.

Lemma 3. ^(ÜDa)=i'$((7>To;)1-p).

Proof. By formula (3) and Theorem 1 we have for ££jK$:

»—o »=o

If ?$(£) S: — j'c((2?Ta)1-p), then the left side is integral and conse-

quently so are all the coefficients on the right, in particular the last,

which is 5¿(£). On the other hand, if £ is some element with ?$(£)

= — v$((D,ay~p) — 1, then the left side is not integral and conse-

quently one of the coefficients •S*(£r,,_1_i) is not integral. Therefore

¿^.p-i-i is an element of order not less than— vy((DTay~p) — \, the 5*

of which is not integral. Thus we have shown that vy((Dra)l~p) has

the property characterizing 7^(35a) stated above.

Theorem 2. The genera G and g of K = k(a) and k are related by

the formula

2G-2 = pi-(2g - 2) + (1 - p) 2Z MDr*«) deg Ç

where r$ is the t of the preceding paragraphs, and n is defined by

(Ko/ko)=p\

Proof. The term on the left equals deg (ß). The first term on the

right equals deg (Conk/K(o})). The sum on the right equals deg 35„

according to Lemma 3. Therefore our theorem simply states the

equality of the degrees in formula (10).

Corollary 1. If fe is a field of algebraic functions of one variable of
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characteristic p>0 and genus g, and K is a totally inseparable finite

extension of k of genus G, then G — g is divisible by (p — l)/2.

Proof. Since the extension K/k can be broken into steps of de-

gree p, it is enough to prove the statement in case (K/k) =p. In this

case, upon multiplying the formula of the preceding theorem through

by pn and reading it modulo (p—1), we obtain

2G-2 = 2g-2 (mod (p-i)).

Remark. A simple example of the situation we are discussing is the

case where fe = fe0(x, y) is a hyperelliptic field generated by an equa-

tion of the form y2 = xp — a (p¿¿2), of genus (p —1)/2. Upon adjunc-

tion of allp we obtain a rational field of genus 0. Corollary 1 shows that

this genus drop is typical.

Corollary 2. 7/ fe is a field of algebraic functions of one variable of

characteristic p>0 and genus g<(p — l)/2, then fe is what Artin [2]

has called a "conservative" field. That is, the genus of k is invariant

under all constant field extensions.

Proof. This follows immediately from Corollary 1 and the well

known facts: (a) that if the genus changes under any constant field

extension, the change occurs already in a finite purely inseparable

constant extension; (b) that in the latter case the genus can only de-

crease, never increase; (c) the genus is always ^0.

Remark. Fact (b) above follows at once from Theorem 2 because

in the case of a constant field extension we have « à 1 and can take

aEK0,'so that v%(Dr^a) ^0 for all 'iß.

It is perhaps of some interest to see how the numbers

v^(DT^a) deg ^3 in the formula of Theorem 2 may be computed in the

ground field fe in terms of the element a=apEk, the pth root of

which is extracted to obtain K. This is easily done.

Proposition. Let p be the place of k below %. Let

rp = Max {vp(a — xp)}.

Then

pnvv(DTya) deg ^ß = \
l(n,-l)degp, ifpW

Proof. Since Ky = k9(a) =fe„ (a1,p), and (K%/kv) =p, a is not a pth

power in fe„. Therefore r9 < 00. Let b be an element of fe„ such that

rv=vp(a — bp).

Case 1. If Plrv, let rt = sp. Let ¿ be a local uniformizing parameter
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in fe,,, and put r = (a — b)t~aÇE.Ky. Then rp=(a — bp)t-sv is a unit in fe„.

The residue class of this unit is not a pth power of a residue class in

fe„. Otherwise, if c£fep, such that cp^(a — bp)t~sp (mod p), then the

pth power, bp+tspcp, would be a better approximation to a than bp.

Therefore we have f = p, e= 1 in this case, and the powers of r are an

integral basis for £5 over o. DTa = (DaT)~1=ta shows that vy(DTa)=s

and therefore v<$(Dra)pn deg ty=sp deg p=rp deg p.

Case 2. If p\r9, solve the diophantine equation rfl — pm=l. Let t

be a local uniformizing parameter in fe„, and put r = (a — b)lt~mEKy.

Then rp = (a — bp) H~mp has ordinal number rfl — mp = 1 in fe„. Therefore

e = p,f—l,T is a local uniformizing parameter in TTç, and the powers

of r are an integral basis. Dar = l(a — b)l~H~m = l(a — b)~h shows that

DTa = (Dar)~1 = l~1(a — b)r~1 has ordinal number rp — 1 in Ky, be-

cause / is prime to p and a — b has ordinal number r» in 7C$. Therefore

v<v(DTa)pn deg $ = (rp — 1) deg p.
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