SOME INEQUALITIES RELATED TO ABEL'S METHOD OF SUMMATION

W. B. PENNINGTON

1. It is well known that if

$$(1) x = e^{-1/u},$$

then there exists a constant ρ such that

(2)
$$\limsup_{u\to\infty} \left| \sum_{n=0}^{\infty} a_n x^n - \sum_{n\leq u} a_n \right| \leq \rho \limsup_{n\to\infty} |na_n|$$

for any series $\sum a_n$. This inequality is the source of Tauber's o-converse of Abel's theorem [Tauber 9]. It is also the source of the following theorem of Vijayaraghavan [10, Theorem 1]:

THEOREM 1. Suppose that the series $\sum a_n x^n$ is convergent for 0 < x < 1, to the sum f(x) say, and that, for some fixed real number θ , $e^{i\theta}f(x) \to +\infty$ as $x\to 1-0$. Suppose further that $a_n=O(1/n)$ as $n\to\infty$. Then $e^{i\theta}\sum_{n\leq u}a_n\to +\infty$ as $u\to\infty$.

Theorem 1 may be stated rather less precisely as follows: If the series $\sum a_n$ is summable (A) to the sum s with $|s| = \infty$, and if $a_n = O(1/n)$, then $\sum a_n = s$. In this form it is seen to be an analogue, for infinite s, of Littlewood's well known o-Tauberian theorem for Abel summability [Littlewood 8]. Vijayaraghavan showed that the corresponding analogue of the Hardy-Littlewood "one-sided" Tauberian theorem for Abel summability [Hardy and Littlewood 6] is not true. He proved the following theorem [Vijayaraghavan 10, Theorem 3], and showed by an example that it is "best possible."

THEOREM 2. Suppose that the series $\sum a_n x^n$ is convergent for 0 < x < 1, to the sum f(x) say, that $f(x) \to -\infty$ as $x \to 1-0$, and that the numbers a_n are real and satisfy the inequality

$$a_n > -\frac{K}{n \log \log n}$$

when $n \ge 3$. Then

$$\sum_{n \leq u} a_n \rightarrow - \infty \ as \ u \rightarrow \infty.$$

It is the object of this paper to obtain an inequality related to

Received by the editors January 7, 1952.

Theorem 2 in the same way as the inequality (2) is related to Theorem 1.

Recently the inequality (2) and similar ones have received considerable attention [1; 2; 3; 4; 5; 7; 11]. Hartman [7] has found the best possible value $\bar{\rho}$ for the constant ρ in (2) ($\bar{\rho} = 1.01598 \cdots$). Agnew [1; 2; 2 contains an account of the previous work on the subject] has shown that if (1) is replaced by $x = e^{-q/u}$, then (2) remains true with ρ depending on q, and he has shown that the best possible value $\bar{\rho}(q)$ is least when $q = \log 2$ ($\bar{\rho}(\log 2) = 0.96804 \cdots$).

2. Theorem 2 is clearly a corollary of the theorem:

THEOREM 3. Suppose that the series $\sum a_n x^n$ is convergent for 0 < x < 1, and that the numbers a_n are real. Let

$$x = \exp\left(-\frac{r}{u(\log u)^p}\right),\,$$

where u>0, and p and r are any fixed real numbers satisfying $p \ge 1$ and r>0. Then

(3)
$$\liminf_{u\to\infty} \left\{ \sum_{n=0}^{\infty} a_n x^n - x^u \sum_{n\leq u} a_n \right\} \geq p \liminf_{n\to\infty} a_n n \log \log n,$$

and the factor p on the right-hand side is the smallest for which the inequality is true.

The theorem is obviously true if the right-hand side is equal to $-\infty$. We may therefore suppose that

$$\lim_{n\to\infty}\inf a_n n\log\log n=\alpha>-\infty.$$

Let $\beta < \alpha$. Then for all but a finite number of the terms a_n we shall have

$$(4) a_n n \log \log n > \beta.$$

It will be sufficient to show that the left side of (3) is greater than $p\beta$.

Since

$$x^{u} = \exp\left(-\frac{r}{(\log u)^{p}}\right) \to 1$$

as $u \to \infty$, we may change a finite number of the terms a_n without changing the value of the left side of (3), and we shall suppose that $a_0 = a_1 = a_2 = 0$, and that (4) holds for $n \ge 3$.

Then

(5)
$$\sum_{n=0}^{\infty} a_n x^n - x^u \sum_{n \le u} a_n = \sum_{n \le u} a_n (x^n - x^u) + \sum_{n > u} a_n x^n$$
$$> \beta \left\{ \sum_{3 \le n \le u} \frac{x^n - x^u}{n \log \log n} + \sum_{n > u} \frac{x^n}{n \log \log n} \right\}$$
$$= \beta t(u)$$

say. We have now to show that $t(u) \rightarrow p$ as $u \rightarrow \infty$.

Since 0 < x < 1 and $u(\log u)^p = -r/\log x$,

(6)
$$t(u) \leq (1 - x^{u}) \sum_{3 \leq n \leq u} \frac{1}{n \log \log n} + \frac{1}{\log \log u} \sum_{u \leq n \leq u (\log u)^{p}} \frac{1}{n} + \frac{1}{\log \log u} \sum_{n > -r (\log x)} \frac{x^{n}}{n}.$$

Now

$$1-x^{u}=1-\exp\left(-\frac{r}{(\log u)^{p}}\right)=O\left(\frac{1}{(\log u)^{p}}\right),$$

and

$$\sum_{3 \le n \le u} \frac{1}{n \log \log n} < 1 + \int_3^u \frac{dv}{v \log \log v} = O\left(\frac{\log u}{\log \log u}\right),$$

so that the first term on the right side of (6) is

$$O\left(\frac{1}{(\log u)^{p-1}\log\log u}\right) = O\left(\frac{1}{\log\log u}\right)$$

since $p \ge 1$. Since r > 0,

$$\sum_{n>-r/\log x} \frac{x^n}{n} < 1 + \int_{-r/\log x}^{\infty} x^t \frac{dt}{t} = 1 + \int_{1}^{\infty} x^{-vr/\log x} \frac{dv}{v}$$

$$= 1 + \int_{1}^{\infty} e^{-rv} v^{-1} dv < \infty,$$

and so the third term on the right side of (6) is $O(1/\log \log u)$. It remains to consider the second term. We have

$$\sum_{1 \le n \le y} \frac{1}{n} = \log y + O(1)$$

as $y \rightarrow \infty$, and so

$$\sum_{u < n \le u (\log u)^p} \frac{1}{n} = \sum_{n \le u (\log u)^p} \frac{1}{n} - \sum_{n \le u} \frac{1}{n}$$

$$= \log \{u(\log u)^p\} - \log u + O(1)$$

$$= p \log \log u + O(1)$$

as $u \rightarrow \infty$. It follows that the second term is equal to

$$p + O\left(\frac{1}{\log \log u}\right)$$

as $u \rightarrow \infty$. Hence, by (6), we have

$$t(u) \le p + O\left(\frac{1}{\log \log u}\right) = p + o(1)$$

as $u \rightarrow \infty$. On the other hand

$$t(u) \ge \sum_{u < n \le u (\log u)^p / \log \log u} \frac{x^n}{n \log \log n}$$

$$\ge \frac{\exp(-1/\log \log u)}{\log \log \left\{ u (\log u)^p / \log \log u \right\}} \sum_{u < n \le u (\log u)^p / \log \log u} \frac{1}{n}$$

$$= \frac{1 + O(1/\log \log u)}{\log \log u + O(\log \log u / \log u)} \left\{ p \log \log u + O(\log \log \log u) \right\}$$

$$= p + O\left(\frac{\log \log \log u}{\log \log u}\right)$$

$$= p + o(1)$$

as $u \rightarrow \infty$. Thus

$$t(u) \rightarrow p \text{ as } u \rightarrow \infty$$
,

and (3) is proved.

The example

(7)
$$a_n = \begin{cases} 0 & (n = 0, 1, 2), \\ -1/n \log \log n & (n \ge 3) \end{cases}$$

proves that the inequality (5) is the best possible, and, consequently, that p is the best possible constant in (3).

This completes the proof of Theorem 3.

If we impose another condition on the series $\sum_{0}^{\infty} a_n$, we can remove the factor x^u from the left side of (3), and so obtain a closer analogy with (2).

THEOREM 4. Suppose that the hypotheses of Theorem 3 are fulfilled, and that, in addition, the sum of the series $\sum_{n=0}^{\infty} a_n x^n$ is bounded above as $x \to 1-0$. Then

(8)
$$\liminf_{u\to\infty} \left\{ \sum_{n=0}^{\infty} a_n x^n - \sum_{n\leq u} a_n \right\} \geq p \liminf_{n\to\infty} a_n n \log \log n,$$

and the constant p is the best possible.

Since $\sum_{0}^{\infty} a_{n}x^{n}$ is bounded above,

$$\sum_{n=0}^{\infty} a_n x^n - \sum_{n \le u} a_n = x^{-u} \left\{ \sum_{n=0}^{\infty} a_n x^n - x^u \sum_{n \le u} a_n \right\} - (x^{-u} - 1) \sum_{n=0}^{\infty} a_n x^n$$

$$\ge \exp\left(\frac{r}{(\log u)^p}\right) \left\{ \sum_{n=0}^{\infty} a_n x^n - x^u \sum_{n \le u} a_n \right\}$$

$$+ O\left(\frac{1}{(\log u)^p}\right),$$

and (8) follows from Theorem 3 since exp $(r/(\log u)^p) \to 1$ as $u \to \infty$. If we take a_n as in (7), we know that

$$\lim_{u\to\infty}\inf\left\{\sum_{n=0}^{\infty}a_nx^n-x^u\sum_{n\leq u}a_n\right\}=p\lim_{n\to\infty}\inf a_nn\log\log n,$$

and

$$\left\{ \sum_{n=0}^{\infty} a_n x^n - x^u \sum_{n \le u} a_n \right\} - \left\{ \sum_{n=0}^{\infty} a_n x^n - \sum_{n \le u} a_n \right\}$$

$$= (1 - x^u) \sum_{n \le u} \frac{1}{n \log \log n}$$

$$= O\left(\frac{1}{(\log u)^p}\right) O\left(\frac{\log u}{\log \log u}\right)$$

$$= O\left(\frac{1}{\log \log u}\right) = o(1)$$

as $u \rightarrow \infty$. Hence

$$\lim_{n\to\infty}\inf\left\{\sum_{n=0}^{\infty}a_nx^n-\sum_{n\leq n}a_n\right\}=p\lim_{n\to\infty}\inf a_nn\log\log n,$$

and since the additional condition imposed in this theorem is obviously satisfied, this completes the proof of the theorem.

We obtain the smallest constant in (3) if we take p=1. It is easy

to see that we cannot take p < 1 here, for

$$t(u) \ge \sum_{3 \le n \le u/\log \log u} \frac{x^n - x^u}{n \log \log n}$$

$$\ge \left\{ \exp\left(-\frac{r}{(\log u)^p \log \log u}\right) - \exp\left(-\frac{r}{(\log u)^p}\right) \right\} \sum_{3 \le n \le u/\log \log u} \frac{1}{n \log \log n}$$

$$= \left\{ \frac{r}{(\log u)^p} + o\left(\frac{1}{(\log u)^p}\right) \right\} \left\{ \frac{\log u}{\log \log u} + o\left(\frac{\log u}{\log \log u}\right) \right\}$$

$$= \frac{r}{(\log u)^{p-1} \log \log u} \left\{ 1 + o(1) \right\} \to \infty$$

if p < 1. However, we can still obtain an inequality if we take

$$x = \exp(-q \log \log u/u \log u) \qquad (q > 0).$$

THEOREM 5. If

$$x = \exp\left(- q \log \log u/u \log u\right),$$

where q is a fixed positive number, then

$$\lim_{u\to\infty}\inf\left\{\sum_{n=0}^{\infty}a_nx^n-x^u\sum_{n\leq u}a_n\right\}\geq (q+1)\liminf_{n\to\infty}a_nn\log\log n.$$

It is clear that we have to prove that

$$t(u) = \sum_{3 \le n \le u} \frac{x^n - x^u}{n \log \log n} + \sum_{n > u} \frac{x^n}{n \log \log n} \rightarrow q + 1$$

as $u \rightarrow \infty$. We have

$$t(u) \leq (1 - x^{u}) \sum_{3 \leq n \leq u} \frac{1}{n \log \log n} + \frac{1}{\log \log u} \sum_{u < n \leq u \log u / \log \log u} \frac{1}{n}$$

$$+ \frac{1}{\log \log u} \sum_{n > -1 / \log x} \frac{x^{n}}{n}$$

$$= \left\{ \frac{q \log \log u}{\log u} + o\left(\frac{\log \log u}{\log u}\right) \right\} \left\{ \frac{\log u}{\log \log u} + o\left(\frac{\log u}{\log \log u}\right) \right\}$$

$$+ \frac{\log \log u + o(\log \log u)}{\log \log u} + o(1) = q + 1 + o(1)$$

as $u \rightarrow \infty$. On the other hand

$$t(u) \ge \sum_{3 \le n \le u/\log \log u} \frac{x^n - x^u}{n \log \log n} + \sum_{u < n \le u \log u/(\log \log u)^2} \frac{x^n}{n \log \log n}$$

$$> \left\{ \exp\left(-\frac{q}{\log u}\right) - \exp\left(-\frac{q \log \log u}{\log u}\right) \right\}$$

$$\cdot \sum_{3 \le n \le u/\log \log u} \frac{1}{n \log \log n}$$

$$+ \frac{\exp\left(-q/\log \log u\right)}{\log \log u + o(1)} \sum_{u < n \le u \log u/(\log \log u)^2} \frac{1}{n}$$

$$= q + 1 + o(1)$$

as $u \rightarrow \infty$. This completes the proof.

It is not difficult to see that if $x = e^{-v}$, where

$$v = v(u) > 0,$$
 $v = o\left(\frac{\log \log u}{u \log u}\right),$
 $1/v = O(u \log u),$

then

$$\lim_{u\to\infty}\inf\left\{\sum_{n=0}^{\infty}a_nx^n-x^u\sum_{n\leq u}a_n\right\}\geq \lim_{n\to\infty}\inf a_nn\log\log n,$$

and if $\sum_{n=0}^{\infty} a_n x^n$ is bounded above as $x \rightarrow 1-0$,

$$\lim_{u\to\infty}\inf\left\{\sum_{n=0}^{\infty}a_nx^n-\sum_{n\leq u}a_n\right\}\geq \lim_{n\to\infty}\inf a_nn\log\log n.$$

This is the most precise inequality of this form that we can obtain, and the constant 1 corresponds to Agnew's constant $\bar{\rho}(\log 2) = .96804 \cdots$

In conclusion we show that the factor $n \log \log n$ in the expression $\lim \inf_{n\to\infty} a_n n \log \log n$ is the smallest that can occur in such one-sided inequalities, whatever function x=x(u) we choose.

Suppose that we try to obtain an inequality involving

$$\lim_{n\to\infty}\inf\frac{a_nn\,\log\,\log\,n}{\phi(n)}$$

where $\phi(n) \to \infty$ as $n \to \infty$. We shall have to find, if possible, a function w(u) > 0 such that if $x = e^{-1/w}$, then

$$s(u) \equiv \sum_{3 \le n \le u} \frac{\phi(n)(x^n - x^u)}{n \log \log n} + \sum_{n > u} \frac{\phi(n)x^n}{n \log \log n}$$

is bounded as $u \to \infty$. We show that this cannot be done. Let $n_0 (\geq 3)$ be such that $\phi(n) \geq 1$ for $n \geq n_0$. Then

$$s(u) \ge \sum_{n_0 \le n \le u/\log \log u} \frac{x^n - x^u}{n \log \log n}$$

$$> \frac{1}{\log \log u} \left\{ \exp\left(-\frac{u}{w \log \log u}\right) - \exp\left(-\frac{u}{w}\right) \right\} \sum_{n_0 \le n \le u/\log \log u} \frac{1}{n}$$

$$= \frac{(u/w) \log u}{\log \log u} \left\{ 1 + o(1) \right\}$$

as $u \rightarrow \infty$. Thus for s(u) to be bounded we must have

$$(9) w > k \frac{u \log u}{\log \log u}$$

for some positive constant k, as $u \rightarrow \infty$. In particular w/u must tend to infinity with u, and so

$$s(u) \ge \sum_{u < n \le w} \frac{\phi(n) x^n}{n \log \log n} > \frac{e^{-1} \min_{u < \nu \le w} \phi(\nu)}{\log \log w} \sum_{u < n \le w} \frac{1}{n}$$
$$= \frac{e^{-1} F(u) \log (w/u)}{\log \log w} \left\{ 1 + o(1) \right\}$$

as $u \to \infty$, where $F(u) = \min_{u < \nu \le w(u)} \phi(\nu) \to \infty$ as $u \to \infty$. If s(u) is to be bounded as $u \to \infty$, w(u) must certainly satisfy the inequality

$$\log \frac{w}{u} < K \frac{\log \log w}{F(u)}$$

for some constant K, when u is sufficiently large. We show that the inequalities (9) and (10) are incompatible.

From (10) it follows, in particular, that $\log (w/u) < 2^{-1} \log w$, that is to say, $w < u^2$, for large u. Hence

$$\log (w/u) < (K/F(u)) (\log \log u + \log 2) < (1/2) \log \log u$$

for sufficiently large u since $F(u) \to \infty$ as $u \to \infty$. We thus have $w < u(\log u)^{1/2}$ as $u \to \infty$, and this is clearly incompatible with (9).

REFERENCES

- 1. R. P. Agnew, Abel transforms of Tauberian series, Duke Math. J. vol. 12 (1945) pp. 27-36.
- 2. ——, Abel transforms and partial sums of Tauberian series, Ann. of Math. (2) vol. 50 (1949) pp. 110-117.
- 3. H. Hadwiger, Über ein Distanztheorem bei der A-Limitierung, Comment. Math. Helv. vol. 16 (1943-1944) pp. 209-213.
- 4. ——, Die Retardierungserscheinung bei Potenzreihen und Ermittlung zweier Konstanten Tauberscher Art, Comment. Math. Helv. vol. 20 (1947) pp. 319-332.
- 5. ——, Über eine Konstante Tauberscher Art, Revista Matemática Hispano-Americana (4) vol. 7 (1947) pp. 65-69.
- 6. G. H. Hardy and J. E. Littlewood, Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive, Proc. London Math. Soc. (2) vol. 13 (1914) pp. 174-191.
- 7. P. Hartman, Tauber's theorem and absolute constants, Amer. J. Math. vol. 69 (1947) pp. 599-606.
- 8. J. E. Littlewood, The converse of Abel's theorem on power series, Proc. London Math. Soc. (2) vol. 9 (1910) pp. 434-448.
- 9. A. Tauber, Ein Satz aus der Theorie der unendlichen Reihen, Monatshefte für Mathematik und Physik vol. 8 (1897) pp. 273-277.
- 10. T. Vijayaraghavan, Converse theorems on summability, J. London Math. Soc. vol. 2 (1927) pp. 215-222.
- 11. A. Wintner, On Tauber's theorem, Comment. Math. Helv. vol. 20 (1947) pp. 216-222.

HARVARD UNIVERSITY