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1. It is well known that if

(1) x = e-llu,

then there exists a constant p such that

(2) lim sup 22 a"Xn — 22 a" ^ p lim sup | nan |

for any series 22an- This inequality is the source of Tauber's o-con-

verse of Abel's theorem [Tauber 9]. It is also the source of the fol-

lowing theorem of Vijayaraghavan [10, Theorem l]:

Theorem 1. Suppose that the series 22anX" is convergent for 0<x

<1, to the sum f(x) say, and that, for some fixed real number 6, e'ef(x)

—>+oo as x—»1 — 0. Suppose further that an = 0(l/n) as «—»oo. Then

ei9/Jnsua„—»+ oo os«->i».

Theorem 1 may be stated rather less precisely as follows: If the

series 22an is summable (A) to the sum s with \s\ = <x>, and if a„

= 0(1/«), then 22an = s- in this form it is seen to be an analogue, for

infinite s, of Littlewood's well known O-Tauberian theorem for Abel

summability [Littlewood 8]. Vijayaraghavan showed that the cor-

responding analogue of the Hardy-Littlewood "one-sided" Tauberian

theorem for Abel summability [Hardy and Littlewood 6] is not true.

He proved the following theorem [Vijayaraghavan 10, Theorem 3],

and showed by an example that it is "best possible."

Theorem 2. Suppose that the series 22anX" is convergent for 0 <x < 1,

to the sum f(x) say, that f(x)—*— <x> as x—>l — 0, and that the numbers

an are real and satisfy the inequality

K
an > —

n log log n

when n = 3. Then

It is the object of this paper to obtain an inequality related to

22 an—>— °° as u-
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Theorem 2 in the same way as the inequality (2)  is related to

Theorem 1.

Recently the inequality (2) and similar ones have received con-

siderable attention [l; 2; 3; 4; 5; 7; ll]. Hartman [7] has found

the best possible value p for the constant p in (2) (p = 1.01598 • • • ).

Agnew [l; 2; 2 contains an account of the previous work on the

subject] has shown that if (1) is replaced by x =e~qlu, then (2) remains

true with p depending on q, and he has shown that the best possible

value p(q) is least when q = log 2 (p(log 2) =0.96804 • • • ).

2. Theorem 2 is clearly a corollary of the theorem:

Theorem 3. Suppose that the series ^a„x" is convergent for

0<x<l, and that the numbers an are real. Let

x = exp(--),
\     «(log m)V

where u>0, and p and r are any fixed real numbers satisfying £ =T

and r>0. Then

(3) lim inf < 22 anXn — xu22 an\  = p Ihn inf a„n log log n,
u->» V 71-0 néu       J n-><o

and the factor p on the right-hand side is the smallest for which the in-

equality is true.

The theorem is obviously true if the right-hand side is equal to

— oo. We may therefore suppose that

lim inf ann log log n = a > — oo.

Let ß <a. Then for all but a finite number of the terms c„ we shall

have

(4) ann log log n > ß.

It will be sufficient to show that the left side of (3) is greater than

pß. _
Since

xu = exp (-) —» 1
V     (log «W

as u—»oo, we may change a finite number of the terms an without

changing the value of the left side of (3), and we shall suppose that

a0 = ai = a2 = 0, and that (4) holds for « = 3.
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Then

22 a*xn - xu22 a* = 22 an(xn - x") + 22 a"Xn
.   .      n=«0 n^M náu n>«

(5)

> ß\ E -n—+£~rn—rUánáu M log log n „>u  « log log »J

= ßt(u)

say. We have now to show that t(u)^p as m—><x>.

Since 0<x<l and «(log u)p= —r/log x,

^1 1^1
t(u) = (1 - *«)  £   -7—i-+ 7—^-        £

Sana«  « lOg log » log log M   «Sa„â«(Iog«)P       «
(O)

+      1 22    -•
log log U    „>_r/log z  M

Now

1 - x« = 1 - exp(-) = Oí-V
\     (log «)»/ \(log «)"/

and

^        i ru      dv/'u         at)                 /   log w   \-01---),
3      V log log V               \log  log  uf3SnSu w log log n J 3    v log log v \log log

so that the first term on the right side of (6) is

o(_!_) = o(—L_)
\(log «)p_1 log log «/ \log log «/

since £ ^ 1. Since r > 0,

22     — <1+| a;'— =14-1    »-"/log x _
n>-r/log »   « •'-r/log i ¿ «J 1 l>

= 14-1    e-"v-ldv < 00,

and so the third term on the right side of (6) is 0(1 /log log u)

remains to consider the second term. We have

2   - = log y + 0(1)
íSná» n

as y—* », and so
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E     ¿-    E    i-E^
u<nSu(log u)'     W náuClog«)!"     M náu    M

= log   {«(log «)"}   — log M + 0(1)

= ¿ log log u + 0(1)

as w—>oo. It follows that the second term is equal to

Vlog log «/

as «—»oo. Hence, by (6), we have

Uog log
t(u) = p + o(----) = p + o(l)

\log log «/

as «—» oo. On the other hand

^ x"
t(u) =

u<nâu(log u)*/log log u    « lOg lOg M

™'-'"""'""" E
>g «)P,

[ /> log log « + 0(log log log w)}

u<náu(log ujP/log log u    » log log M

exp (-1/loglog«)

log log   {«(log«) "/log log U }   u<»:S„(IogtO»>/logIogu     W

1 + 0(l/log log u)

log log u + 0(log log «/log «)

/log log log u\

\     log log M    /
= p + -

\   log log

= p + 0(1)

as u—»oo. Thus

t(u)—*p as M—»oo,

and (3) is proved.

The example

(7)
/     0 (n = 0, 1, 2),

I— 1/ra log log n (n = 3)

proves that the inequality (5) is the best possible, and, consequently,

that p is the best possible constant in (3).

This completes the proof of Theorem 3.

If we impose another condition on the series 22o °n, we can re-

move the factor x" from the left side of (3), and so obtain a closer

analogy with (2).
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Theorem 4. Suppose that the hypotheses of Theorem 3 are fulfilled,

and that, in addition, the sum of the series 22* a"x" ™ bounded above

as x—»1 — 0. Then

(8) lim inf < 22 a'>x" — 22 a»(   = P nm inf a«w l°g l°g w>
u->» V n-0 néu       ! n-»«

and the constant p is the best possible.

Since ¿2o anX" is bounded above,

00 /      00 \ 00

22 anXn  -   22 an  =   X~u <   22 anX"  ~   X"  £ ö„>    -   («"»  -   1) £ a„X"
n=0 n^w \ n=0 n==u      / n=0

= exp (      T      ) { £ a„*" - *"£ a„>
\(l0g   w)V   („_0 ni«      )

+ °(t,—r)>\(log «)"/

and (8) follows from Theorem 3 since exp (//(log m)p)—»1 as u—»».

If we take a„ as in (7), we know that

lim inf < 22 anXn — xu22 an\  — P hm inf ann log log n,

and

< ¿2 anxn - xu22an\ - \¿2 <*»*" - £ an>

(!-*•) S
„g„ n log log w

_ 0(_J_W-uïi-)
\(l0g w)V      \log  log  M/

\log log m/

as u—»oo. Hence

lim inf < £ anx" — £ an>  = p lim inf a„« log log m,

and since the additional condition imposed in this theorem is ob-

viously satisfied, this completes the proof of the theorem.

We obtain the smallest constant in (3) if we take p = \. It is easy
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to see that we cannot take p < 1 here, for

xn — X"

t(u) à       £
3áns«/iog log u n log log n

=  jexp(-A
(      \     (log u)p log log ul

— exp I-)> £ -
\     (log u)"/)    tSnSu/u* log u n log log n

. L_L_ + . (_!_)} /J5i_ + . (JïiAl
((log «)p        \(log u)p/)   Uog log «        Mog log u))

=- { 1 + 0(ï) }  -> oo
(log u)p_1 log log u

if p<l. However, we can still obtain an inequality if we take

x = exp (— q log log u/u log u) (q > 0).

Theorem 5. If

x = exp ( —  q log log u/u log u),

where q is a fixed positive number, then

lim inf < £ anxn — xu£ an>  = (q + 1) lim inf ann log log w.
«->« \ n=0 nSu      / n->«o

It is clear that we have to prove that

Ar A> —-. A*

-r—,— + ¿2-r-,->5+1
3ar.au n log log n      „>„ n log log n

as u—»oo. We have

^1 1 „ 1
*(«) = (1 - as»)   £   —-—-+

3ânSu w log log n     log log m u<„Su log u/iog log u n

+       1 £     Ï
log log M   „>-i/log x  n

fq log log «        /log log m\|   I   log« /   log m   M

1      log U \     log «     ))     (log log M \l0g log  U/j

log log M + 0(log log U)
H-;—:-h o(l) =9+1 + o(l)

log log u
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as u—»oo. On the other hand

A.71   __    •yti 4***

Ku) ̂        £      —-— + £ -——
3=n=u/log log u n lOg lOg n        u<n=u log «/(log log u)*   » lOg lOg «

I x   (-    q    ] - ex   ( - Ç l0g l0g "]]
\ \      log M/ \ log M      / j

£

e
+

3=n=u/log log « W log log W

exp (-ç/loglog«) _ 1

log log « + 0(1)      „<„g„ log «/(log log u)*    «

= q + 1 + o(l)

as u—» oo. This completes the proof.

It is not difficult to see that if x = e~", where

n.„ /log log u\
v = v(u) > 0, V = 0 I-1 )

\  M log «  /

1/v = 0(u log «),

then

lim inf < £ anxn — xu£ an>  = lim inf ann log log n,

and if £o a„xn is bounded above as x—»1 — 0,

lim inf < £ anxn — £ an>   = lim inf an« log log n.

«-*» V n=0 n=u      / »-»"

This is the most precise inequality of this form that we can obtain,

and the constant 1 corresponds to Agnew's constant p(log 2)
=.96804

In conclusion we show that the factor n log log n in the expression

lim infn^«, ann log log n is the smallest that can occur in such one-

sided inequalities, whatever function x = x(u) we choose.

Suppose that we try to obtain an inequality involving

,     ann log log n
lim mf

<p(n)

where #(«)—>oo as n—»oo. We shall have to find, if possible, a func-

tion w(u)>0 such that if x=e~Uw, then
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<p(n)(xn - x") <b(n)x»
s(u) m   £-—-+ £ ——-

3Sns„     n log log n „>„wloglogw

is bounded as u—» oo. We show that this cannot be done.

Let n0(^3) be such that <j>(n) = 1 for « = «0- Then

_           x" - xu
s(u) = £ -

r.0=riSu/log log u M log lug M

>-^exp (---)
log log u \      \     w log log u)

-«*(-■=)}       E      "-
\ W/J      noánáu/log log u   n

(u/w) log u . ,= Y {1 + 0(D
log log M

as u—» oo. Thus for s(m) to be bounded we must have

« log M
(9) íí) > /fe

log log u

for some positive constant k, as m—» oo. In particular w/u must tend

to infinity with u, and so

e_1  min   <p(v)
<b(n)xn u<*èu, 1

s(«) =    £   -¡—;-> —:—:-    £   —
«<„=«• «log log n log log W       XnS«  «

e_1F(M) log (w/u)   ,
= -      , l + o(D

log log w

as u—»oo, where F(m) = minu<^„(u) <p(c)—»oo as w^oo. If s(u) is to

be bounded as u—»oo, w(w) must certainly satisfy the inequality

W log log I£>
(10) log— <K

u F(u)

for some constant K, when « is sufficiently large. We show that the

inequalities (9) and (10) are incompatible.

From (10) it follows, in particular, that log (w/u)<2~1 log w,

that is to say, w<u2, for large u. Hence

log (w/u) < (K/F(u)) (log log u + log 2) < (1/2) log log u

for sufficiently  large u since  7\w)—»oo   as u—»oo.  We thus have

w<w(log w)1/2 as M—»oo, and this is clearly incompatible with (9).
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