SOME INEQUALITIES RELATED TO ABEL’S
METHOD OF SUMMATION

W. B. PENNINGTON
1. It is well known that if
1) x = el

then there exists a constant p such that

(2) limsup| D anx™ — 2 ¢ < plimsup | na, |

Yo n=0 nSu n— o
for any series Zta,,. This inequality is the source of Tauber’s o-con-
verse of Abel’s theorem [Tauber 9]. It is also the source of the fol-
lowing theorem of Vijayaraghavan [10, Theorem 1]:

THEOREM 1. Suppose that the series_Za,.x" s convergent for 0 <x
<1, to the sum f(x) say, and that, for some fixed real number 0, e¥f(x)
—+ 0 as x—1—0. Suppose further that a,=0(1/n) as n—«. Then
eP D n<uln—+ © as u— o,

Theorem 1 may be stated rather less precisely as follows: If the
series ) a4, is summable (A) to the sum s with |s| =0, and if a,
=0(1/n), then Y a,=s. In this form it is seen to be an analogue, for
infinite s, of Littlewood’s well known O-Tauberian theorem for Abel
summability [Littlewood 8]. Vijayaraghavan showed that the cor-
responding analogue of the Hardy-Littlewood “one-sided” Tauberian
theorem for Abel summability [Hardy and Littlewood 6] is not true.
He proved the following theorem [Vijayaraghavan 10, Theorem 3],
and showed by an example that it is “best possible.”

THEOREM 2. Suppose that the series Y _a,x" is convergent for 0 <x <1,
to the sum f(x) say, that f(x)—>— o as x—1—0, and that the numbers
a. are real and satisfy the inequality

when n=3. Then

> @ —© as u— o,
nsu

It is the object of this paper to obtain an inequality related to
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Theorem 2 in the same way as the inequality (2) is related to
Theorem 1.

Recently the inequality (2) and similar ones have received con-
siderable attention [l; 2;3;,4;,5;7; ll]. Hartman [7] has found
the best possible value p for the constant p in (2) (5=1.01598 - - - ).
Agnew [1; 2; 2 contains an account of the previous work on the
subject] has shown that if (1) is replaced by x =e~¢/*, then (2) remains
true with p depending on ¢, and he has shown that the best possible
value p(q) is least when ¢g=log 2 (5(log 2) =0.96804 - - - ).

2. Theorem 2 is clearly a corollary of the theorem:

THEOREM 3. Suppose that the series Y a.x® is convergemt for
0<x<1, and that the numbers a, are real. Let

r
¥ =exp (— u(log u)")’

where u>0, and p and r are any fixed real numbers satisfying p=1
and r>0. Then

3) lim inf { > @t — 2ty a,.} Z p lim inf a,n log log =,

y—® n=0 nSu n—w
and the factor p on the right-hand side is the smallest for which the in-
equality 1s true.

The theorem is obviously true if the right-hand side is equal to
— . We may therefore suppose that

lim inf g.n loglogn = a > — .

n—>c0

Let B<c. Then for all but a finite number of the terms a, we shall
have

4) a.n log log n > B.
It will be sufficient to show that the left side of (3) is greater than
8.

Since

r
ST — — —_ 1
i exp ( (log u)”)

as u— o, we may change a finite number of the terms a, without
changing the value of the left side of (3), and we shall suppose that
do=a;=a;=0, and that (4) holds for n=3.
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Then
S ot = 2T 0 = T aaler - 20) + X ot
n=0 nSu nSu n>u
®) s .
o om Ly e
ssnsu nloglogn .5 nloglogn
= Bt(u)

say. We have now to show that {(x)—p as u— .,
Since 0<x <1 and #(log #)?=—r/log x,

WSA—a) Y —— o — > -
© ssasu nloglogn  loglog # usaSuglguwr n
1 ooxt
log log # n> j10g = ; .
Now
. r 1
1—2x*=1—exp (— (log u)”) = O((Iog u)")’
and

u dy log %
LD L A TA
3S+=u 7 log log n s vloglogv log log #
so that the first term on the right side of (6) is

1 1
o ) - ()
(log )71 log log u log log %
since p 2 1. Since r>0,

xn © dt ® dy
Z — <14 Xt — = l_l_f x—or/logz
1 v

n>—r/log z N —r/log z ¢

=1+ f ey idy < o0,
1

and so the third term on the right side of (6) is O(1/log log %). It
remains to consider the second term. We have

> S -lgy +0(1)

1SaSy P

as y— o, and so
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1 1 1
> 1oz 1ozt
u<nZu(log u)? # nSu(log u)» N nsu M
= log {u(log w)»} — log u + O(1)
= p log log u + O(1)

as u— . It follows that the second term is equal to

1
of——
?+ (log log u)

as u— o, Hence, by (6), we have

i 5 2+0() = p+ o)
log log »

as #— o, On the other hand
xﬂ
Hu) = —
u<nSu(log u)P/log log u M lOg lOg n
exp (—1/log log #) 1
2

= log log {u(log u)?/log log u} u<nSu(log wP/log log u N

1+ 0(1/log 1
log log % + O(log log u/log u)

log log log %
log log u
=p+ o(1)
as u—». Thus
t(u)—p as u—,
and (3) is proved.
The example
0 =0,1,2

Q o= { ool
— 1/nlog log n (n=3)

proves that the inequality (5) is the best possible, and, consequently,
that p is the best possible constant in (3).

This completes the proof of Theorem 3.

If we impose another condition on the series Y ¢ @, We can re-
move the factor x* from the left side of (3), and so obtain a closer
analogy with (2).
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THEOREM 4. Suppose that the hypotheses of Theorem 3 are fulfilled,
and that, in addition, the sum of the series ) .o a,x" is bounded above
as x—1—0. Then

(8) lim inf {Z @t — a,,} 2= p lim inf ¢,z log log n,

U— o n=0 n— 0
and the constant p is the best possible.

Since )¢ a.x* is bounded above,

':20 @ x™ — éan {Z}) a,x" — x* Z } (x‘“ -1) E @z
N Z o = 2L o}

n=0

v

((log u)?

+0 ((log1 u) ”) ’

and (8) follows from Theorem 3 since exp (r/(log #)?)—1 as u— .
If we take @, as in (7), we know that

lim inf { D aaxn — x“z a,,} = p lim inf a.n log log »,

u—w n=0 n—®

and

{ D Gaxm — xvy an} - { f: Q™ — Ean}

nsu n=0

1
(1—=293

»=u n log log n

1 log u
g 7)o s )
(log u)? log log u

0] (EglloTt) = o(1)

It

as u— . Hence

lim inf { > — a,,} = p lim inf a.n log log n,
U—o n=0 nSu no®
and since the additional condition imposed in this theorem is ob-
viously satisfied, this completes the proof of the theorem.

We obtain the smallest constant in (3) if we take p=1. It is easy
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to see that we cannot take p <1 here, for
xﬂ — xu

o) = o
3<nSuflog logu M lOg log n

r
> -
- {exp( (log )7 log log u)

r 1
— €X — [—
P ( (log u)ﬁ)} 3§n§u/§g logu ® log lOg n

r 1 log u log #
sl (e Rl e
(log u)? (log u)? log log u log log u

r

{14+ 0(1)} > =

- (log #)*1 log log #
if p <1. However, we can still obtain an inequality if we take
x = exp (— ¢ log log u/u log u) (g >0).
THEOREM §. If
x = exp (— ¢ log log u/u log u),
where q is a fixed positive number, then
lim inf { > @t — xvy, a,,} = (¢ + 1) lim inf a.n log log n.
U%—r0 ne=0 nSu n—r 0
It is clear that we have to prove that
X" — x* x"
)= 3 b 3 gt 1
ssn=u nloglogn = a5y mloglogn

as u—x. We have

1 1 1
) S (1 —a%) ) + > —
3snsu nloglogn  log log % u<asulog wlog logu #

1 x®

log log # n>-_1/108 = %

g log log u log log u log # log u
)
log # log # log log log log #

log log # + o(log log u)
log log %

+ o(1) = ¢+ 1+ o(1)
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as u— . On the other hand

x” — xu xﬂ
) = i, L
Sénéu/log log u n log log n u<n=u log u/(log log u)2 n log log n

{or (- iga) = (- e
> qexp|l —— ) —exp{ — ———
log 4 log u
1
3SnSuflog log u log lOg n
exp (—g/log log u) 1
10g log u + 0(1) u<nSu log u/ (log log u)2 M

=g+ 1+ o(1)

as u— . This completes the proof.
It is not difficult to see that if x =¢~*, where

log log
v = 9(u) >0, v=o(—g——g——>,
u log u

1/v = O(u log ),
then ‘

u—® n=0 nsu now

lim inf { > anxt — xvy, a,,} = lim inf a.n log log #,
and if D¢ an.x* is bounded above as x—1—0,

lim inf { Z A x™ — Z a,.} = lim inf a.n log log .
U—eo n=0 nSu n—wo

This is the most precise inequality of this form that we can obtain,
and the constant 1 corresponds to Agnew’s constant p(log 2)
=.96804 - - -.

In conclusion we show that the factor » log log # in the expression
lim inf,.. e.n log log 7 is the smallest that can occur in such one-
sided inequalities, whatever function x =x(x) we choose.

Suppose that we try to obtain an inequality involving

.. amnloglogn
lim inff ————
e é(n)
where ¢(n)— ®© as n— . We shall have to find, if possible, a func-
tion w(#) >0 such that if x =¢~1», then
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o(n)(x" — x¥) d(n)x
s(u) = Z _— _—
ssn=u 0 loglogn »>u 1 loglog »n

is bounded as #— . We show that this cannot be done.
Let no(=3) be such that ¢(n) =1 for n=n,. Then

x” — xu
s(u) = - =
no=n=u/log log u log ]0g n

> i~ Sigiegs)
— = Qexp{— ———
log log u P w log log #

u 1
w no<nZuflog logu N

_ (u/w) log u {

1+ o(1)}
log log u

as u— . Thus for s(u#) to be bounded we must have

u log u
) —
log log »
for some positive constant k, as #— . In particular w/« must tend
to infinity with «, and so

¢! min ¢(»)

s(u) > ¢(n)x" u<vsSw i
= u<n=w 1 loglog n loglog w  ucnzw ®
e 'F(u) log (w/u)
= {14 o(1)}
log log w

as u—», where F(#)=miny,<,<ww ¢@)— o as u— . If s(u) is to
be bounded as #— 0, w(%) must certainly satisfy the inequality
log log w

F(u)
for some constant K, when % is sufficiently large. We show that the
inequalities (9) and (10) are incompatible.

From (10) it follows, in particular, that log (w/u#)<27! log w,
that is to say, w<u?, for large u. Hence

log (w/u) < (K/F(u)) (log log » + log 2) < (1/2) log log «

for sufficiently large # since F(#)— o as u—o. We thus have
w<u(log »)'* as u—, and this is clearly incompatible with (9).

w
(10) log— < K
%
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