6. E. P. Lane, A treatise on projective differential geometry, The University of Chicago Press, 1942.
7. -, The correspondence between the tangent plane of a surface and its point of contact, Amer. J. Math. vol. 48 (1926).
8. E. J. Wilczynski, Projective differential geometry of curved surfaces, Second memoir, Trans. Amer. Math. Soc. vol. 9 (1908).

Michigan State College

TWO NOTES ON NILPOTENT GROUPS

R. C. LYNDON

I
We extend a theorem of Rédei and Szép. ${ }^{1}$ Our proof is quite straightforward, and employs a method of considerably more general applicability. ${ }^{2}$

The lower central series of a group G is formed by taking $G_{1}=G$, and successively defining G_{n+1} to be the commutator ($\left.G_{n}, G\right) . G$ is nilpotent if some $G_{N+1}=1$. If A and B are subgroups of $G, A \bigvee B$ is the subgroup generated by the elements of A and of B together, and A^{m} the subgroup generated by the m th powers of elements of A.

Theorem. Let A and K be subgroups of a nilpotent group G, and let $A^{m^{\circ}}=1$ for some integer m^{e}. Then, for any $n \geqq 1$,

$$
(A \vee K)_{n}=\left(A^{m} \vee K\right)_{n} \text { implies }(A \vee K)_{n}=K_{n}
$$

We may clearly suppose that $G=A \bigvee K$. The elements of G_{r} can be written as products of commutators of order r :

$$
\left(x_{1}, \cdots, x_{r}\right)=\left(\left(\cdots\left(\left(x_{1}, x_{2}\right), x_{3}\right) \cdots, x_{r-1}\right), x_{r}\right)
$$

Let C_{r} be the subgroup generated by those commutators for which

[^0]some x_{i} is in A, and D_{r} by those for which some x_{i} is in A^{m}. From the identity
$$
(x, y z)=(x, y)(x, z)(z, x, y)
$$
it follows that all commutators are linear in the x_{i}, modulo commutators of higher order. In particular, it follows that
\[

$$
\begin{gather*}
(A \vee K)_{n}=K_{n} \vee C_{n}, \\
\left(A^{m} \vee K\right)_{n}=K_{n} \vee D_{n}, \\
D_{n} \subset C_{n}^{m} \vee C_{n+1}, \tag{1}
\end{gather*}
$$
\]

and, since $A^{m^{e}}=1$, that

$$
\begin{equation*}
C_{n}^{m^{e}} \subset C_{n+1} \tag{2}
\end{equation*}
$$

From the hypothesis that $(A \bigvee K)_{n}=\left(A^{m} \bigvee K\right)_{n}$, hence that $K_{n} \bigvee C_{n}$ $=K_{n} \vee D_{n}$, we have $C_{n} \subset K_{n} \vee D_{n}$ and, from (1),

$$
\begin{equation*}
C_{n} \subset K_{n} \vee C_{n}^{m} \vee C_{n+1} \tag{3}
\end{equation*}
$$

By the evident rule $(L \bigvee M)^{m} \subset L^{m} \bigvee M^{m} \bigvee(L, M)$, from

$$
C_{n} \subset K_{n} \vee C_{n}^{r} \vee C_{n+1}
$$

we deduce that

$$
\begin{aligned}
& C_{n}^{m} \subset K_{n}^{m} \vee C_{n}^{r m} \vee C_{n+1}^{m} \vee G_{2 n}, \\
& C_{n}^{m} \subset K_{n} \vee C_{n}^{r m} \vee C_{n+1},
\end{aligned}
$$

and, by (3), that

$$
C_{n} \subset K_{n} \vee C_{n}^{r m} \vee C_{n+1}
$$

Applying this argument $e-1$ times to (3) gives

$$
C_{n} \subset K_{n} \vee C_{n}^{m^{e}} \vee C_{n+1}
$$

whence, by (2),

$$
\begin{equation*}
C_{n} \subset K_{n} \vee C_{n+1} \tag{4}
\end{equation*}
$$

From the Lie-Jacobi congruences

$$
(x, y)(y, x)=1, \quad(x, y, z)(y, z, x)(z, x, y) \equiv 1\left(\bmod G_{4}\right)
$$

it follows that every $\left(x_{1}, \cdots, x_{k+1}\right)$ with x_{k+1} in A is expressible, modulo G_{k+2}, as a product of such factors with x_{i} in A for some $i \leqq k$: in short,

$$
C_{k+1} \subset\left(C_{k}, G\right) \vee C_{k+2}=\left(C_{k}, K\right) \vee\left(C_{k}, A\right) \vee C_{k+2}
$$

Assuming now

$$
C_{k} \subset K_{k} \vee C_{k+1}
$$

and substituting, we obtain

$$
\begin{aligned}
& \left(C_{k}, K\right) \subset K_{k+1} \vee C_{k+2} \\
& \left(C_{k}, A\right) \subset\left(K_{k}, A\right) \vee C_{k+2} \subset\left(C_{k}, K\right) \vee C_{k+2} \subset\left(C_{k}, K\right),
\end{aligned}
$$

whence

$$
C_{k+1} \subset K_{k+1} \vee C_{k+2}
$$

By iteration, it follows from (4) that

$$
C_{n} \subset K_{n} \vee K_{n+1} \vee \cdots \vee K_{N} \vee C_{N+1} \subset K_{n} \vee C_{N+1}
$$

Since $G_{N+1}=1$ by hypothesis,

$$
C_{n} \subset K_{n}
$$

whence $K_{n} \vee C_{n}=K_{n}$ and $(A \vee K)_{n}=K_{n}$, as required.

II

By a uniform method ${ }^{3}$ we establish easily two results that are fairly obvious from well known considerations, and a further result (Theorem 2.1) which answers for nilpotent groups a question regarding identical relations in groups that was raised by B. H. Neumann. ${ }^{4}$

We employ standard notation for commutators: $\left(x_{1}, \cdots, x_{n}\right)$ $=\left(\cdots\left(\left(x_{1}, x_{2}\right), x_{3}\right), \cdots, x_{n}\right)$, and for the lower central series: $G=G_{1}, G_{n+1}=\left(G_{n}, G\right)$.

Lemma 1. Let F be a finitely generated free group, and R a normal subgroup of F. Then, for each $n \geqq 1, R=\left[S_{n}, R_{n+1}\right]$, the normal subgroup generated by a finite set S_{n} together with $R_{n+1}=R \cap F_{n+1}$.

Proof. Proceed inductively from the vacuous case $n=0$. Since F_{n+1} / F_{n+2} is a finitely generated abelian group, so is its subgroup R_{n+1} / R_{n+2}. Let $T=\left\{r_{i}\right\}$ be a finite set of elements of R_{n+1} such that the cosets $r_{i} R_{n+2}$ generate R_{n+1} / R_{n+2}. Evidently $R=\left[S_{n}, R_{n+1}\right]$ implies $R=\left[S_{n}, T, R_{n+2}\right]$.

Theorem 1.1. Every finitely generated nilpotent group is definable by a finite set of relations.

[^1]Proof. If $G=F / R$ is nilpotent, say $G_{N+1}=1$, we have R_{N+1} $=F_{N+1}=\left[\left(x_{1}, \cdots, x_{N+1}\right)\right.$, all sets x_{1}, \cdots, x_{N} of generators for $\left.F\right]$. Hence $R=\left[S_{N}, R_{N+1}\right]$ is defined by a finite set of relations.

Theorem 1.2. In a finitely generated group which is known to be nilpotent ${ }^{5}$ the word-problem is decidable.

Proof. Let $G=F / R$ and $G_{N+1}=1$. Suppose we have an expression for the word w in the form $w=r_{n-1} w_{n}$, where r_{n-1} is in R and w_{n} is in F_{n}. By reference to the finitely generated abelian group F_{n} / F_{n+1}, we can obtain an expression $w_{n}=r_{n} w_{n+1}, r$ in R, w_{n+1} in F_{n+1}, if any such exists. Proceeding thus, either $w=r_{1} r_{2} \cdots r_{N} w_{N+1}$ in R, or else, for some $n, w=r_{1} r_{2} \cdots r_{n-1} w_{n}$ where w_{n} is not in $\left[R, F_{n+1}\right]$ and hence w is not in R.

A normal subgroup W of the free group F is a word group if it is defined by certain words $w\left(\xi_{1}, \cdots, \xi_{n}\right)$ under all substitutions of elements of F for the ξ_{i}. For any group G, let F be a denumerably generated free group; the group W_{G} of identical relations for G is the normal subgroup of F defined by all words $w\left(\xi_{1}, \cdots, \xi_{n}\right)$ that equal 1 under all substitutions of elements of G for the ξ_{i}.

Lemma 2. Let F be a free group and W a word subgroup of F. Then, for each $n \geqq 1, W=\left\{S_{n}, W_{n+1}\right\}$, the word group defined by a finite set S_{n} of words, in at most n indeterminates, together with $W_{n+1}=W \cap F_{n+1}$.

Proof. Induction as for Lemma 1. Consider the set of all relations of the form

$$
\begin{equation*}
r=\prod_{i} c_{i} \cdot s \tag{1}
\end{equation*}
$$

where the c_{i} are commutators of generators of F of order $n+1$, $\prod c_{i} \neq 1$, and s is in F_{n+2}. Each c_{i} contains at most $n+1$ generators. Let X be the set of generators occurring in some $c_{i_{0}}$ in r. Substituting $x_{k} \rightarrow 1$ for all generators x_{i} not in X, we derive from r a relation

$$
\begin{equation*}
r^{\prime}=\Pi^{\prime} c_{i} \cdot s^{\prime} \tag{2}
\end{equation*}
$$

where $\Pi^{\prime} c_{i}$ is a partial product of that occurring in (1) and contains

[^2]at least the factor $c_{i_{0}}$. Therefore, in
\[

$$
\begin{equation*}
r^{\prime \prime}=r \cdot r^{\prime-1}=\Pi^{\prime \prime} c_{i} \cdot s^{\prime \prime} \tag{3}
\end{equation*}
$$

\]

the product contains fewer factors than that in (1). If we repeat this construction, each relation (1) is obtained as a consequence of relations (2), each involving at most $n+1$ generators. Now, all the relations (2) are equivalent, for the purpose of defining W, to the corresponding relations ($2^{\prime \prime}$) in the generators x_{1}, \cdots, x_{n+1}, and, by Lemma 1, these possess a finite basis T modulo W_{n+2}. Thus, if W $=\left\{S_{n}, W_{n+1}\right\}$, then $W=\left\{S_{n}, T, W_{n+2}\right\}$.
Theorem 2.1. A nilpotent group G possesses a finite basis of identical relations.

Proof. If $G_{N+1}=1$, then $F_{N+1} \subset W_{G} \subset F$. By Lemma 2, W $=\left\{S_{N}, W_{N+1}\right\}$ where S_{N} is finite. But $W_{N+1}=F_{N+1}$ is defined by the single word ($\xi_{1}, \cdots, \xi_{N+1}$), whence W has a finite basis. We note that, by multiplying together all the words in this basis, taken with distinct indeterminates, we obtain a single word which constitutes a basis for W.

Princeton University

[^0]: Received by the editors January 7, 1952.
 ${ }^{1}$ L. Rédei and J. Szép, Monatshefte für Mathematik vol. 55, p. 200. The present proof avoids "counting arguments" and the attendant finiteness conditions; for $n=1$ the present argument reduces substantially to that of Rédei and Szép. We

 ${ }^{2}$ The basic idea of "expanding" words in commutators of ascending order has been exploited by P. Hall, Proc. London Math. Soc. vol. 36, p. 29; and by O. Grün, J. Reine Angew. Math. vol. 182, p. 158. See also W. Magnus, Monatschefte für Mathematik vol. 47, p. 307, and K. T. Chen, Proceedings of the American Mathematical Society vol. 3, p. 44.

[^1]: ${ }^{3}$ For the method, see references given in footnote 2.
 ${ }^{4}$ B. H. Neumann, Math. Ann. vol. 114, p. 506. Theorem 2.1 was announced by the author in Bull. Amer. Math. Soc. Abstract 57-4-278.

[^2]: ${ }^{5}$ It is understood that G is defined by a finite set of relations, whence a finite set for F_{n} modulo F_{n+1} can be obtained, say, by a simplification of the ReidemeisterSchreier process. It suffices for Theorem 2.1, in fact, to assume that the G_{n} have intersection 1. To see this, test, for $n=1,2, \cdots$, the two conditions: (i) w is in $\left[R, F_{n}\right]$; and (ii) w is not equal, in F, to any product $\prod u_{i} r_{i} u_{i}^{-1}$ where the u_{i} and r_{i} together are of total length less than n. For some finite n either (i) must fail and so w is not in R, or (ii) must fail, whence w is in R.

