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TWO NOTES ON NILPOTENT GROUPS

R. C. LYNDON

I

We extend a theorem of Rédei and Szép.! Our proof is quite
straightforward, and employs a method of considerably more general
applicability.?

The lower central series of a group G is formed by taking G,=G,
and successively defining Gn41 to be the commutator (G,, G). G is
nilpotent if some Gyi=1. If 4 and B are subgroups of G, A\/B is
the subgroup generated by the elements of 4 and of B together, and
Am™ the subgroup generated by the mth powers of elements of 4.

THEOREM. Let A and K be subgroups of a nilpotent group G, and
let A™ =1 for some integer m*. Then, for any n21,

AV K)n = (A™\ K), implies (4 \/ K)» = K,.

We may clearly suppose that G=A4 VK. The elements of G, can
be written as products of commutators of order 7:

(w1, oy ) = ((- -« (%1, %2), %3) -+ -, %), %)
Let C, be the subgroup generated by those commutators for which
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! L. Rédei and J. Szép, Monatshefte fiir Mathematik vol. 55, p. 200. The present
proof avoids “counting arguments” and the attendant finiteness conditions; for
n=1 the present argument reduces substantially to that of Rédei and Szép. We
remark that the hypothesis 4™ =1 admits various modifications.

2 The basic idea of “expanding” words in commutators of ascending order has
been exploited by P. Hall, Proc. London Math. Soc. vol. 36, p. 29; and by O. Griin,
J. Reine Angew. Math. vol. 182, p. 158. See also W. Magnus, Monatschefte fiir Mathe-
matik vol. 47, p. 307, and K. T. Chen, Proceedings of the American Mathematical
Society vol. 3, p. 44.
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some x; is in 4, and D, by those for which some x; is in A™. From the
identity

(%, y3) = (%, 9)(%, 3)(3, %, ¥)

it follows that all commutators are linear in the x;, modulo commus-
tators of higher order. In particular, it follows that

(A \/ K)n = Kn V Cm
(Amv K)n = Kn V Dm

) D, CCh V Capy
and, since A™' =1, that
(2) Cv C Copr.

From the hypothesis that (4 \VV K),=(4™\V/ K),, hence that K,\/ C,
=K,V D,, we have C,CK,\ D, and, from (1),
3 Co CKaV Co V Caga.
By the evident rule (L\/ M)»CL»\/ M™\/(L, M), from

Ca CKaV CoV Capt
we deduce that
Cr C Ky V Co V Cota V Gan,
Cr CKn V Cn V Cas,
and, by (3), that
Ca CKaV Ca" V Cag.
Applying this argument e—1 times to (3) gives

Co CEaV C V Cupa,
whence, by (2),

4) C.CK,V Cpt1.
From the Lie-Jacobi congruences
(% 9)(y, %) = 1, (%, 3, 2) (9, 2, 8)(3, %, y) = 1 (mod Gy),
it follows that every (xi, -« +, Xxy1) With x5y in 4 is expressible,

modulo Gis2, as a product of such factors with x; in A for some
1< k: in short,
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Cit1 C (CrG) V Cryz = (Cr, K) V (Ciy 4) V Chya.
Assuming now
Ci CKrV Cina

and substituting, we obtain

(Cr, K) C Ki41 V Ciya,

(Cr, 4) C (Kiy A) V Ciyz C (Chy K) V Ciy2 C (Cry K),
whence

Ciy1 C Kis1 V Ciya.

By iteration, it follows from (4) that

C.CEK. VKV - VEyVCynCKuV Crr
Since Gy4+1=1 by hypothesis, v

C. C Ky,

whence K,V C,=K, and (AVVK),=K,, as required.

II

By a uniform method?® we establish easily two results that are
fairly obvious from well known considerations, and a further result
(Theorem 2.1) which answers for nilpotent groups a question regard-
ing identical relations in groups that was raised by B. H. Neumann.4

We employ standard notation for commutators: (xi, - - -, x,)
=(---((x1, x2), x3), * + +, %xs), and for the lower central series:
G=Gi, Gu1=(G,, G).

LEMMA 1. Let F be a finitely generated free group, and R a normal
subgroup of F. Then, for each n=1, R=[S,, R.y1], the normal sub-
group generated by a finite set S, together with R,y =RMNF, 4.

Proor. Proceed inductively from the vacuous case n=0. Since
Foy1/F.ys is a finitely generated abelian group, so is its subgroup
Rn41/Rays. Let T={r;} be a finite set of elements of R, such that
the cosets 7;R.;s generate R,;1/R.q2. Evidently R=[S,, R,1] im-
plies R=[S,, T, R.;2].

THEOREM 1.1. Every finitely generated nilpotent group is definable
by a finate set of relations.

3 For the method, see references given in footnote 2.
¢ B. H. Neumann, Math. Ann. vol. 114, p. 506. Theorem 2.1 was announced by
the author in Bull. Amer. Math. Soc. Abstract 57-4-278.
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Proor. If G=F/R is nilpotent, say Gyj1=1, we have Ryy
=Fyu= [(xl, -+, XN41), all sets xy, - - -, xx of generators for F].
Hence R=[Swy, Ry41] is defined by a finite set of relations.

THEOREM 1.2. In a finitely generated group which is known to be
nilpotent® the word-problem is decidable.

Proor. Let G=F/R and Gy;1=1. Suppose we have an expression
for the word w in the form w=r,_,w,, where 7,_; is in R and w, is
in F,. By reference to the finitely generated abelian group F,/F,y1,
we can obtain an expression w,=7,W,41, 7 in R, Wy41 in Fuyy, if any
such exists. Proceeding thus, either w=ryr;y - - - rywyy in R, or else,
for some n, w=ryry - - - r,_,w, where w, is not in [R, F..1] and hence
w is not in R.

A normal subgroup W of the free group F is a word group if it is
defined by certain words w(f;, - - -, £,) under all substitutions of
elements of F for the ;. For any group G, let F be a denumerably
generated free group; the group W of identical relations for G is the
normal subgroup of F defined by all words w(¢,, - - -, £,.) that equal
1 under all substitutions of elements of G for the ..

LEMMA 2. Let F be a free group and W a word subgroup of F. Then,
for each nz1, W={S,, Way1}, the word group defined by a finite set
S» of words, in at most n indeterminates, together with Woy1 =W\ Fp,1.

Proor. Induction as for Lemma 1. Consider the set of all relations
of the form

1) r= Hc.--s

where the ¢; are commutators of generators of F of order n41,
Hc;#l, and s is in F,;.. Each ¢; contains at most n+1 generators.
Let X be the set of generators occurring in some ¢;, in r. Substituting
xr—1 for all generators x; not in X, we derive from 7 a relation

2) v = [Te-s
where J]'c; is a partial product of that occurring in (1) and contains

& It is understood that G is defined by a finite set of relations, whence a finite set
for F, modulo F,, can be obtained, say, by a simplification of the Reidemeister-
Schreier process. It suffices for Theorem 2.1, in fact, to assume that the G, have inter-
section 1. To see this, test, for =1, 2, - - -, the two conditions: (i) w is in [R, F,];
and (ii) w is not equal, in F, to any product Hu.-r.-u:l where the u; and r; together are
of total length less than #. For some finite n either (i) must fail and so w is not in R,
or (ii) must fail, whence w is in R.
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at least the factor c;,. Therefore, in
3) v =71 = [["eis”

the product contains fewer factors than that in (1). If we repeat this
construction, each relation (1) is obtained as a consequence of rela-
tions (2), each involving at most n+1 generators. Now, all the rela-
tions (2) are equivalent, for the purpose of defining W, to the cor-
responding relations (2”) in the generators xi, - - -, ¥a41, and, by
Lemma 1, these possess a finite basis T° modulo W,y Thus, if W
= {Sn, W1}, then W={S,, T, W,,,}.

THEOREM 2.1. A nilpotent group G possesses a finite basis of identical
relations. ’

Proor. If Gwyji=1, then Fy uC WeCF. By Lemma 2, W
= {Sy, Wn41} where Sy is finite. But Wy41=Fyy1is defined by the
single word (£, « - -, £v41), whence W has a finite basis. We note
that, by multiplying together all the words in this basis, taken
with distinct indeterminates, we obtain a single word which con-
stitutes a basis for W. '
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