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SERGE LANG AND JOHN TÄTE

Let k be a function field in one variable over a constant field k0,

and let g be its genus. By a subfield of k we shall always mean a sub-

field k' properly containing ka so that k! is likewise a function field

with ko as constants. We let g' be the genus of k!'.

If k/k' is separable, then the classical formula

2g - 2 = n(2g' -2) + ß

where ¡j. is a non-negative integer and n = (k:k') shows that g'^g.

If k/k' is inseparable, then g' may be greater than g. Nevertheless, we

have:

Theorem 1. If k is separably generated over ko then g' ^g.

Proof. In view of the above remarks we may assume k/k' is

purely inseparable. Let p be the characteristic. Then k/k' is a p-tower

in which each step is of degree p and is inseparable. We may further

assume that (k:k')=p because a subfield of a separably generated

field is also separably generated. (This is an immediate consequence

of MacLane's criterion that k is separably generated over k0 if and

only if k is linearly disjoint from ¿¿''"over k0.)

Let x be a separating variable for k over k0 so that we may write

k = k0(x, y) where y is separable over k0(x). Then we also have

k = ko(x, yp). We see that k0(xp, yp)Ek' and in fact we must have

k' = ko(xp, y") because

(k:k0(x", y")) = (k0(x, yp):ko(xp, y")) = p = (klk').

Thus k' = k0kp. But kp/k\ is an isomorphic image of k/k0, and there-

fore the genus of kp (considered as function field over the constant

field &o) is g- Since k' may be regarded as a constant field extension

of kp its genus g' is at most g, as was to be shown.

That the genus cannot increase in a constant field extension is

proved in [l] and [2].

Our theorem generalizes the argument used by Chevalley [2,

p. 106] to prove Luroth's theorem. Namely, a rational field R is a sep-

arably generated field of genus zero. By Theorem 1 any subfield R'

is of genus zero. A prime of degree 1 in R induces a prime of degree 1

in R' and hence, by a well known criterion, R' is a rational field.

If the field k is not separably generated, however, the behavior of
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its subfields may be much more pathological and for fields of genus

zero we can prove the converse of Theorem 1. In fact we prove more:

Theorem 2. A field of genus zero which is not separably generated

over its constant field contains subfields of arbitrarily high genus.

Proof. Let k be a field of genus zero. It is well known and easy to

show [l, chap. XVI, 4] that k is either a rational field, or k = k0(x, y)

where x, y satisfy a quadratic equation

F(x, y) = ay2 + (bx + c)y + dx2 + ex + f = 0.

If k is not separably generated, then the characteristic of the field

must be 2 and the partial derivatives dF/dx and dF/dy must both

vanish. Consequently k = ko(x, y) where x, y satisfy an equation of

the type

(1) y2 = ax2 + b, a,bE h.

Furthermore, k0(a112, b112) has degree 4 over ko- Suppose other-

wise, that is, (ko(a112, bll2):k0)^2, and say a112 is a generator of

ko(a1'2, b112). Then we can write bll2 = c+da1/2 with c, d in k0. In a

suitable extension we havey = a1/2x+ô1/2, and hencey = a1/2(x+á)+c.

This shows that y and a112 generate the same field over ko(x), and

that k is rational, contrary to assumption.

We shall now construct hyperelliptic subfields k' of k of arbitrarily

high genus.

Let k' = k0(z, w) where z = x2 and w = x2n+1+y, w = l. Then w2

= z2n+1+az+b. We shall prove that k' has genus n by developing

the theory of inseparable quadratic extensions of a rational field in

analogy with the classical separable theory. We need a lemma.

Lemma. Let ko be any field of characteristic 2. Let k0(x) be the rational

Held in the variable x, and let k/ko(x) be an inseparable extension of de-

gree 2. Let f(x) be a polynomial in ko[x] of least degree such that

k = k0(x, y) where y2 =f(x). (Such a polynomial will be called minimal.)

Then {l, y] is a minimal basis for the integers of k over k0[x].

Proof. Suppose (r(x)+s(x)y)/t(x) is integral over k0[x] with

r(x), s(x), t(x) in k0[x]. We may assume deg r and deg s<deg /. We

must then show that r = s = 0. For some polynomial g we have

r2 + s2f = t2g.

If s^O, then g competes with/ as a field generator, so deg g=deg/.

This yields deg r2 = deg t2g, which is impossible. Hence s = 0 and there-
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fore r = 0 also, by comparing degrees again. This proves that {l, y\

is a minimal basis.

Theorem 3. Let k = ko(x, (f(x))112) be the field defined in the preceding

lemma, with f(x) minimal. Then if f(x) is of degree n>0, the genus of

k is — [ — n/2 ] — 1 in exact analogy with the classical case.

Proof. We first note that n>0 implies that k0 is the constant field

of k. Otherwise k/k0(x) would be generated by c112 where c lies in ko,

and this would mean n = 0.

Let a be the divisor of the poles of x in k. Then a has degree 2 in k.

We now determine the dimension l(a~") of the vector space of multi-

ples of a~" in two ways.

First by the Riemann-Roch Theorem we have for large v

(2) l(V) = 2v+l-g.

Secondly, using the fact that {l, y\ is a minimal basis,

an integer r(x)+s(x)y is a multiple of or'

<-> a-2-1 r2 + s2f

<-> deg (r2 + s2f) á 2v

<-»deg r ^ v    and    deg s ^ v + [ — n/2].

Each of the preceding equivalences is trivial except possibly the last.

But we assumed that/=a„xn+ • • • +a0 is minimal. It follows that

a„xn is not a square, and therefore

deg (f2 + s2f) = max (deg r2, deg s2/).

This immediately implies the last equivalence.

For v large (>n/2) we obtain

(3) l(a-) = v + 1 + v + 1 + [-n/2].

From (2) and (3) we solve for the genus, and get

g = - [-n/2] - 1

which proves Theorem 3.

In order to complete the proof of Theorem 2 it suffices to show that

the polynomial f(z) = z2n+1+az+b is minimal for the extension

k'/ko(z). If this is not the case, let g(z) be minimal. By the lemma we

can write

(}(z)yi2 = r(z) + s(z)(g(z)y2

and squaring we get
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f(z) = r(z)2 + s(z)2g(z).

Differentiating formally with respect to z we get

(4) f'(z) = z2" + a = (a» + a1'2)2 = s(z)2g'(z).

This shows that in the polynomial domain k0(all2)[z], g'(z) is a

square: g'(z) = (l(z) +all2m(z))2, where the polynomials / and m have

coefficients in k0. Substituting back in (4) we obtain

z" + a1'2 = s(z)(l(z) + a1'2™^)).

Comparing coefficients of a1'2 we see that s(z)m(z) = 1, and that s(z)

must be a constant. But in this case deg g'(z)=2n and therefore

deg g(z) =2w + l = deg/(z); f(z) is minimal, and Theorem 2 is proved.

Actually we have not yet shown the existence of inseparably gen-

erated fields of genus zero, but this gap is easily filled. Let ko be a

field of characteristic 2 which contains elements a and b such that

(k0(a112, ¿>1/2):&o) =4. Then the field k = k0(x, y) defined by equation

(1)

y2 = ax2 + b

is of genus zero, is not separably generated, and has k0 as its field of

constants. Indeed, k/k0(x) is of degree 2. If ko were not the constant

field, then k would be k0(x, c1/2) where cEko, and would therefore be

a rational field over ko(c112). Then y could be expressed as a rational

function in x with coefficients in k0(c112); this rational function must

in fact be a polynomial because its square is a polynomial. We have

y = a1,2x+b112. This means that ko(a112, bll2)Eko(c112) has degree not

greater than 2 over ko, contrary to assumption.

By Theorem 3 we now know that k has genus zero. In the proof of

Theorem 2 we have seen that such a field contains hyperelliptic sub-

fields of arbitrarily high genus. By Theorem 1 the field cannot be

separably generated, a fact which could of course be established

directly.
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