ON CERTAIN ENTIRE FUNCTIONS

I. M. SHEFFER

We shall say that an analytic function f(z) has property f at a point z_1 if the sequence of derivatives $\{f^{(n)}(z_1)\}$, $n=0, 1, \cdots$, takes on only a finite number of distinct values. An entire function of the form

(1)
$$f(z) = Q(z) + \sum_{i=0}^{m-1} A_i \exp \left\{ \omega^i z \right\},$$

where Q(z) is a polynomial and $\omega = \exp\{2\pi i/m\}$, has property \mathcal{J} at every point, but a function having property \mathcal{J} at one point is not necessarily a *special exponential sum* (as we shall term a function of form (1)). We give three theorems whose conditions relate property \mathcal{J} to special exponential sums.

THEOREM 1. If f(z) has property \mathcal{J} at two points, then it is a special exponential sum.

THEOREM 2. If f(z) has property f at a point z_1 , and if at a second point $z_2 \neq z_1$ infinitely many derivatives are equal, then f(z) is a special exponential sum.

THEOREM 3. Let r, σ , A be arbitrary positive numbers, with r an integer and $\sigma \leq 1$. Then there is an integer $V = V[r, \sigma, A]$ with the following property: Let f(z) have property f at z_1 where the distinct values of $\{f^{(n)}(z_1)\}$ are a_1, \dots, a_t , with $t \leq r$ and

(2)
$$\min |a_i - a_j| \ge \sigma \cdot \max |a_i - a_j| \qquad (i \ne j = 1, 2, \dots, t).$$

If for a value z_2 in $0 < |z_1 - z_2| \le A$ there are more than V equal quantities in the sequence $\{f^{(n)}(z_2)\}$, then f(z) is a special exponential sum.

It is clear that Theorem 3 implies 2 and 2 implies 1, so it suffices to establish 3. Since a translation in the independent variable does not alter the essential conditions, we may suppose that $z_1 = 0$ and (changing the letter) that $z_2 = a$. Then

(3)
$$f(z) = \sum_{0}^{\infty} c_{n} \frac{z^{n}}{n!} = \sum_{0}^{\infty} d_{n} \frac{(z-a)^{n}}{n!},$$

where $c_n = f^{(n)}(0)$ and $d_n = f^{(n)}(a)$. If we differentiate (3) n times and set z = a, we obtain the linear relations

Presented to the Society, April 26, 1952; received by the editors November 30, 1951.

(4)
$$c_n + \frac{a}{1!}c_{n+1} + \frac{a^2}{2!}c_{n+2} + \cdots = d_n \qquad (n = 0, 1, 2, \cdots).$$

Define

(5)
$$\delta_k(A) = \sum_{p=1}^{\infty} \frac{A^p}{(k+1)(k+2)\cdots(k+p)}.$$

Since $\delta_k(A) \rightarrow 0$ as $k \rightarrow \infty$, there is a smallest value $k = K = K[\sigma, A]$ such that

$$\delta_K(A) < \sigma.$$

We shall show that a possible choice of V is $V=r^K$. Set

(7)
$$P_{n,s}(a) = c_n + \frac{a}{1!}c_{n+1} + \cdots + \frac{a^s}{s!}c_{n+s}.$$

Then

(8)
$$d_{n} - d_{q} = \left\{ P_{n,K-1}(a) - P_{q,K-1}(a) \right\} + \frac{a^{K}}{K!} \left\{ (c_{n+K} - c_{q+K}) + \sum_{s=K+1}^{\infty} (c_{n+s} - c_{q+s}) \frac{a^{s-K}}{(K+1) \cdot \cdot \cdot \cdot s} \right\}.$$

Since $|c_{n+s}-c_{q+s}| \le \max |a_i-a_j|$, and $|a| \le A$, the last sum in (8) cannot exceed in magnitude the quantity $\delta_K(A) \cdot \max |a_i-a_j|$.

Now suppose $d_{n_1}=d_{n_2}=\cdots=d_{n_v}$, where $v>r^K$. Since each c_j has one of the values a_1, \dots, a_t , therefore for fixed s there are at most r^{s+1} different expressions $P_{n,s}(a)$. Hence of the expressions $P_{n_j,K-1}(a)$, $j=1,\dots,v$, at least two are equal; say for $n=n_\alpha$, n_β . Taking $n=n_\alpha$, $q=n_\beta$ in (8), we see that

(9)
$$c_{n_{\alpha}+K} - c_{n_{\beta}+K} = -\sum_{s=K+1}^{\infty} (c_{n_{\alpha}+s} - c_{n_{\beta}+s}) \frac{a^{s-K}}{(K+1) \cdot \cdot \cdot s};$$

so

$$|c_{n\alpha+K} - c_{n\beta+K}| \le \delta_K(A) \cdot \max |a_i - a_j| < \sigma \cdot \max |a_i - a_j|.$$

This is in contradiction to (2) unless $c_{n_{\alpha}+K} = c_{n_{\beta}+K}$. We may therefore rewrite (9) as

$$(c_{n\alpha+K+1}-c_{n\beta+K+1}) = -\sum_{s=K+2}^{\infty} (c_{n\alpha+s}-c_{n\beta+s}) \frac{a^{s-K-1}}{(K+2)\cdots s},$$

and from this conclude that $c_{n_{\alpha}+K+1}=c_{n_{\beta}+K+1}$, and so on, with the result that

(10)
$$c_{n_{\alpha}+K+j} = c_{n_{\beta}+K+j}, \qquad j = 0, 1, 2, \cdots.$$

Thus, beginning at least with the index $n = n_{\alpha} + K$, the sequence $\{c_n\}$ is periodic; and it is an easy consequence that f(z) is a special exponential sum.

REMARKS. (i) A theorem¹ of Szegö states that if the coefficients $\{c_n\}$ of the series $F(z) = \sum_0^\infty c_n z^n$ take on only a finite number of distinct values, then either (a) F(z) has the circle |z| = 1 as cut, or (b) F(z) is a rational function of the form $F(z) = P(z)/(1-z^m)$ where m is a positive integer and P(z) is a polynomial. Both cases arise, and this suggests the problem of assigning a further condition to insure (let us say) that case (b) holds. If we introduce the entire function $f(z) = \sum_0^\infty c_n z^n/n!$ associated with F(z), then f(z) has property \mathcal{F} at z = 0; and case (b) is easily seen to be equivalent to the condition that f(z) be a special exponential sum. Thus, the conditions of any one of Theorems 1, 2, 3 suffice to guarantee case (b).

- (ii) Theorem 1 shows that relative to property \mathcal{I} there are only three possibilities for an analytic function f(z): either it has property \mathcal{I} at no point whatever, or at just one point, or at all points. Also, as noted by the referee, Theorem 1 can be formulated in this way: If an entire function of exponential type has for its indicator diagram a circle, center at the origin, then it cannot have property \mathcal{I} at two points.
- (iii) In the course of the proof of Theorem 3 it was shown that a permissible choice of V is $V = V[r, \sigma, A] = r^K$, where $K = K[\sigma, A]$. It would be of interest to determine, for given r, σ, A , the smallest possible V. It is conceivable that this minimum V is independent of one or more of the quantities r, σ, A .

THE PENNSYLVANIA STATE COLLEGE

¹ G. Szegö, Über Potenzreihen mit endlich vielen verschiedenen Koefizienten, Berl. Ber. (1922) pp. 88-91. A proof is also found in P. Dienes, The Taylor series, Oxford, 1931, pp. 324-327.