
EMBEDDING THEOREMS FOR MULTIPLICATIVE
SYSTEMS AND PROJECTIVE GEOMETRIES

TREVOR EVANS

Introduction. It has been shown in a recent paper (see [5]) that

any countable group can be embedded in a group generated by two

elements. We show here that any countable loop (quasigroup, group-

oid) can be embedded in a loop (quasigroup, groupoid) generated by-

one element, any countable semigroup can be embedded in a semi-

group generated by two elements, and any countable projective

plane can be embedded in a projective plane generated by four

points. No such embedding theorem exists for some systems, such as

abelian groups, and some light is thrown on the general problem by

the following theorem. Let 21 be a class of algebras, (Ei) the property

that there is a number m such that any countable 2l-algebra can be

embedded in an 2l-algebra generated by m elements, (E2) the prop-

erty that there is a number n such that the free 2I-algebra on n gen-

erators contains a free subalgebra on a countable number of gener-

ators. Then if 21 has property (Ei), it has also property (E2) and n^m.

1. The embedding of loops.1 Let L be a countable loop with unit

e and generated by gu g2, g3, • • • . Denote by 7 the incomplete loop

consisting of all elements of L and elements fli, a2, a3, • ■ ■ , the opera-

tions defined in 7 being those already defined in L together with the

following:2

(i) e-Oi = ai-e = ai for i = 1, 2, 3, • • • ,

(ii) avOi = gi for i = 1, 2, 3, • • • ,

(iii) argi = a,-+i for i = 1, 2, 3, • • • .

If L has k generators, we need only add elements 0\, a2, a3, ■ • • , ak

to L in constructing 7, the operations being defined as before.

We now embed 7 in a loop G which is freely generated by 7 [2,

Theorem 3.1; 3, Theorem 2.4]. It is obvious from the construction

that G contains L and is generated by Oi.

Theorem I. Any countable loop can be embedded in a loop gen-

erated by one element.

Presented to the Society, December 28, 1951; received by the editors December

18, 1951.
1 See [2; 3], for definitions of the terms used in this section.

2 Strictly speaking, for this to be an incomplete loop in the sense of [3 ] we should

add the two operations (/) and (\). However, this makes no essential difference.
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The above construction can be interpreted in a different way. Let F

be the free loop generated by a with unit element e. Let K be the sub-

loop of F generated by the free set of generators a2, a (a-a2),

a-(a-(a-(aa2))), ■ ■ ■ .'Denote these generators by wu w2,w3, ■ • -and

let Wi<-^gi be a one-one correspondence between the generators of K

and the generators of L. If we denote the defining relations of L by

n(gi, g2, gs, ■ ■ ■ ) = e, i = 1, 2, 3, ■ • • ,

then the loop G constructed above is isomorphic to the factor loop

of F defined by the relations

fi(wi, w2, Wi, ■ ■ ■ ) = e, i = 1, 2, 3, ••■ .

To prove this we need only note that in G, gi=al, g2 = fli-(ai-a1),

gi = ai-(ai-(ai-(ai-a\))), ■ ■ ■ and that G is generated by gu g2, g3, • • •

subject only to the relations

ri(gi, gi, gs, ■ ■ ■ ) = e, i = 1,2,3, ••• .

It follows that if L is defined by n relations, it can be embedded in a

one generator loop defined by n relations.

The subloop K of F has the following property. Let ÍR bea set of

relations in K. Then, considering $R as relations in 7", the set of all

relations which follow from 9Î does not contain any in K which do

not follow from 9Î by considering 9Í as relations in K only. More

precisely, let A7 be a normal subloop of K and let NF be the minimal

normal subloop of F containing N. Then, by the same proof as [5,

Theorem V], N = KC\NF.i In contrast to the situation for groups,

however, any subloop of F can play the role of K in the above con-

struction. We shall not pursue this point here but we discuss briefly,

in the next section, the corresponding situation for semigroups.

The proof of Theorem I can be easily adapted, using the results of

[3], to give the following theorem.

Theorem IA. .4wy countable quasigroup (groupoid, groupoid with

unique division on one side) can be embedded in a quasigroup (groupoid,

groupoid with unique division on one side) generated by one element.

2. The embedding of semigroups. Let S be a countable semigroup

generated by gu g2, gz, ■ ■ ■ with defining relations

(i) fi(gi, g2, £1, • • • ) = rl (gi, g2, gt, • • • ), i = 1, 2, 3, ••• .

Let w be a word in the generators of the form upv where u, v are

•See [2, p. 539] and [3, p. 647].

4 The homomorphism theorems needed in the proof of this can be found in [l].
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words, possibly empty,6 and p =q is one of the defining relations.

Then the replacing of w by uqv is called an elementary transforma-

tion of the word w. Two words are equivalent if we can transform one

into the other by a finite sequence of elementary transformations.

The equivalence classes of words so defined are the actual elements of

the semigroup.

Let F be the free semigroup generated by a, b and let K be the

subsemigroup generated by bab, ba2b, ba?b, • • • , where the ba{b are

in one-one correspondence gi<r+ba{b with the generators of S. This de-

fines a one-one correspondence between the words of 5 and the words

of K. The subsemigroup K has the following property.

Lemma 2.1. Let x, y be words in K and let x = uyv where u, v are words

in F. Then u, v belong to K.

Proof. Any word in K is of the form batyba'b ■ ■ ■ bambbanb, that

is, it begins and ends with b and in between we have alternately some

power of a and b2. This remark is sufficient to prove the lemma.

We now construct a semigroup G by imposing on F the relations

u(bab, ba2b, ba*b, ■ • • ) - r¡ (bab, ba2b, ba3b, ■ ■ • ),
(ii)

i = 1,2,3, ■ ■ ■ ,

corresponding to the relations (i) defining S. This introduces an

equivalence relation between the words of F.

Lemma 2.2. If w is a word in K, then any word equivalent to w is also

in K.

Proof. We note, first of all, that in the defining relations (ii) above

both sides are words in K. Let w = upv, where p = q is one of the rela-

tions (ii). By Lemma 2.1 the words u, v are in K. The effect of an

elementary transformation on w is to replace it by uqv and this is

in K. Any word equivalent to w is obtained by a sequence of such

transformations.

Let us denote by w' the word in K corresponding to w in S under

the mapping gi<->èaiô. We have the following lemma.

Lemma 2.3. Let u, v be two words in S. Then u', v' are equivalent in

G if, and only if, u, v are equivalent in S.

Proof. We note, first of all, that to each defining relation p = q of

5 there corresponds a defining relation p' = q' of G and conversely.

(1) Let u, v be connected by one elementary transformation so

s That is, either one or both of the words u, v may be absent. We do not include

the empty word among the words of S.
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that u = xpy, v=xqy, where x, y are words in S and p = q is a defining

relation of S. Then, necessarily, u'=x'p'y', v'=x'q'y', and so u', v'

are connected by one elementary transformation in G. A simple in-

duction on the number of elementary transformations connecting u

and v shows that if u, v are equivalent in 5, then u', v' are equivalent

in G.

(2) Let u', v' be connected by one elementary transformation in

G so that u' = sp't, v' = sq't, where s, / are words in F and p' =q' is one

of the defining relations of G. Now u', p' are in K and so by Lemma

2.1 the words s, / are in K. Hence we can denote s, t by x', y' where

x, y are words in S. Then u=xpy, v = xqy, where p =q is one of the

defining relations of 5 and so u, v are connected by one elementary

transformation in 5. A simple induction completes the proof of the

lemma.

By the preceding lemmas we have a one-one correspondence {w}

<-> {w'} between the equivalence classes {w} of words in S and the

equivalence classes \w'\ oí G consisting of words in K. Since (uv)'

= mV this correspondence is an isomorphism between 5 and the

subsemigroup of G generated by bab, ba2b, ba3b, ■ ■ • .

Theorem II. Any countable semigroup can be embedded in a semi-

group generated by two elements.

It is of some interest to determine which subsemigroups of F can

play the role of K in the above construction. First of all, such a sub-

semigroup must possess a free set of generators. For example, the

subsemigroup of F generated by ab, aba, bab already has the relation

(aba)(bab) = (ab)3 between its generators. However, this condition is

not sufficient as we see if we attempt to carry through the construc-

tion used in Theorem II for the case when S is the semigroup gen-

erated by gi, g2, g¡ with the defining relation gig2=g2gi and K is gen-

erated by the free set of generators ab, ab2, ab3. From the relation

(ab) (ab2) = (ab2) (ab) in F we can deduce the further relation (ab) (ab3)

= (ab2)2 which is a relation in K. We cannot deduce this relation

inside K however, since it corresponds to the relation gig3 = g\ in S

and this does not follow from the original defining relation of 5. How-

ever, an examination of the proof of Theorem II shows that, in addi-

tion to the freeness of K, we use only that property of K stated in

Lemma 2.1. It is also true that this property of K is necessary.

Corollary to Theorem II. Necessary and sufficient conditions

that a subsemigroup of F can play the role of K in the proof of Theorem

II are (i) it possesses a free set of generators, (ii) it possesses that prop-

erty of K stated in Lemma 2.1.
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Proof. It can easily be verified that we use only these properties

of K to prove Theorem II and so the sufficiency of the conditions is

shown. To show the necessity of the conditions we observe first of all

that K must be free since any relation between the generators of K

would imply that a similar relation holds between the generators of 5.

Now let K be such that there are words u, v in F, u in K, v not in

K, and uv a word in K. Thus K does not satisfy condition (ii) above.

Let 5 have the single defining relation r2 = r, where r is the word in 5

corresponding to u in the one-one correspondence between the words

of S and the words of K. The relations in 5 implied by this defining

relation are all of the form wxriw2riw3 ■ ■ ■ = Wirmw2r"w3 ■ • • where

the w's are words in S, with possibly the first and last absent. But

the relation u2 = u in K, considered as a relation in F, implies the

further relation u(uv) =uv in K and this does not correspond to any

of the relations in 5. Hence K, with the relation u2 = u added, is not

isomorphic to S. This completes the proof.

3. The embedding of projective planes.6 Let 7r0 be the partial plane

consisting of the four points P, Q, Ao, Bo and the two lines /, m where

P, Q lie on / and P, A o on m. We construct a sequence of partial

planes tti, 7r2, ir3, ■ ■ ■ as follows: ttí is obtained from 7r,-_i by adding

points At, Bi, d, Di, Eit Fi, G¿ and lines P5¿_i5t£¿; QAí-iEíFí;
Ai-iBi-iDi, Di being on /; QBi-id, C¿ being on m; BidDiFù C¿-E¿G„
Gí being on /; AiDiEit Ai being on m. Denote by it' the union of all

the iTi. This partial plane is a subset of the free projective plane 7T4

generated by the four points P, Q, Ao, B0.

Let it be the projective plane we wish to embed, it can be gen-

erated by one of its lines n, all points Xlt X2, X3, ■ ■ ■ on n, and two

points U, V not on n. We now form the partial plane w" consisting

of all points and lines in it' and it with the line / identified with the

line n and G¿ identified with Xt for all i. We can do this without any

other forced identifications between the points and lines of it' and

the points and lines of it. By adding lines FiF2U; F3F4U; F&F6V;

F7FaV we form a partial extension it'" of it". Now it'" is generated

by P, Q, Ao, Bo and so, by taking the free extension of it'" to a

complete projective plane,7 we have obtained the required embedding.

Theorem III Any countable projective plane can be embedded in a

projective plane generated by four points.

It should be noted that the same interpretation can be given to

this construction as in the preceding sections.  That is, we have

• See [4] for definitions of the terms used in this section.

'See [4, p. 234].
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added relations to a subplane of ir4 to make it isomorphic to the

plane we wish to embed. In the free plane generated by P, Q, Ao, Bo

the subplane used is generated by Gi, G2, G3, • ■ ■ and the two points

which are the intersections of, respectively, the lines 7"iF2, F3F4 and

the lines FbF6, F7F8.

4. The general problem. Let 21 be a class of algebras. For con-

venience we shall assume that 21 is defined by a finite number of

finitary operations, in a given 21-algebra each w-ary operation being

defined for all ordered sequences of n elements, and that each axiom

of 21 states that every 21-algebra satisfies a certain identical relation.

We shall denote by (Ei) and (E2) those properties of 21 defined in

the introduction.

Theorem IV. If a class 21 has property (Ei), it has also property

(E2) and n^m.

Proof. If 21 has property (Ei), there is an 21-algebra A, generated

by m elements gi, g2, g3, • • • , gm, containing a subalgebra 77 which is

a free 21-algebra on a countable number of generators. Denote by

Wi(gi, g2, g3, ■ ■ ■ ), i=l, 2,3, ■ ■ • , the generators of this subalgebra.

Let F be the free 21-algebra on m generators, au a2, a3, ■ ■ ■ , am, and

let K be the subalgebra of F generated by Wi(au a2, a3, ■ ■ ■ ). In the

homomorphism of F onto A determined by a¿—>g¿, K is mapped onto

77. Since H is free, there is a homomorphism w,(gi, g2, g3, ■ ■ • )

—>Wi(ai, a2, a3, • • • ) of H onto K and the product both ways of these

two homomorphisms is the identity mapping. Hence H and K are

isomorphic. Alternatively, we can see that there cannot be any rela-

tions between the generators of K since these relations would neces-

sarily be preserved in the homomorphism of F onto A, implying

relations between the generators of H.

Since the free abelian group on m generators has, as subgroups,

only free abelian groups on m or fewer generators, we cannot expect

an embedding theorem for abelian groups of the type considered

here. This, of course, can also be deduced from the basis theorem for

abelian groups.

In all the cases considered here, m = n. This is true, also, for groups

and linear nonassociative algebras.8 It would be interesting to know

8 It is shown in [ó] that a nonassociative linear algebra of countable dimension

can be embedded in a nonassociative linear algebra generated by one element. Since

the ring of nXn matrices over a field can be generated by two matrices, any associa-

tive linear algebra of finite dimension can be embedded in an associative linear

algebra generated by two elements. However, the discussion in this section does not

apply to linear algebras or projective geometries, although by enlarging our defini-

tion of an algebra we could probably obtain corresponding results.
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whether it is possible to have m>n, or whether, if there is an em-

bedding theorem at all, necessarily m=n.

Added in proof. It will be seen that we have not, in fact, proved

the necessity of condition (ii) in the corollary to Theorem II, but

only the necessity of a weaker condition. We do not know at present

whether condition (ii) is necessary.

We take this opportunity to point out that the proof of Theorem II

uses methods closely related to those in Marshall Hall, Jr., The word

problem for semigroups with two generators, J. Symbolic Logic vol. 14

(1949) pp. 115-118.
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