
QUATERNIONS AND HADAMARD MATRICES

W. A. RUTLEDGE1

1. Introduction. J. Hadamard has proved [4]2 that a real or com-

plex matrix of order n with elements bounded in absolute value by 1

has a determinant bounded in absolute value by w"'2. A real matrix

satisfying the above will be called an Hadamard matrix. Let H be a

matrix of order n with elements chosen from the sixteen quaternions

(l/2)( + l ±i±j + k), and H* be the quaternionic conjugate trans-

pose of 77. If HH* = nln, the real regular representation of 277 is then

an Hadamard matrix of order 4w.

The purpose of this paper is to study the structure of such ma-

trices and the main theorem obtains a canonical form (under equiva-

lence) for the case where « is a product of distinct primes.

The first sections are devoted to a discussion of specific properties

of integral quaternions most of which are derived as special cases of

the general theory of principal ideal domains and simple algebras.

2. Definitions. The real quaternions form a linear associative

algebra over the real numbers having as a basis four independent ele-

ments 1, i, j, k where 1 is the unit of multiplication and i2=j2 = k2

= ijk= —1. Standard notation will be employed for the conjugate,

q, and norm, N(q), of a quaternion q.

Following Hurwitz [5] an integral quaternion is defined as a real

quaternion in which the components are either all rational integers or

all halves of odd rational integers. This set of quaternions, to be de-

noted by J, forms a principal ideal domain in which there exist great-

est common left and right divisors. An integral quaternion is called

primitive if it cannot be expressed as a product of an integral qua-

ternion and a rational integer not a unit. By an odd quaternion is

meant an integral quaternion whose norm is an odd rational integer.

Two right (left) ideals aJ and bJ (Ja and Jb) are called right (left)

similar if the/-right (left)-moduli J—a J and J—bJ(J— Ja and /— Jb)

are /-isomorphic. Two elements a and b are called right (left) similar

if the ideals aJ and bJ (Ja and Jb) are similar. Since right similarity

and left similarity are equivalent   [3], we may say simply  "a is
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similar to b"; in symbols, a~b.

Following Jacobson, an element a of a principal ideal domain is

called bounded if there exists a nonzero two-sided ideal contained in

aJ. The maximal two-sided ideal contained in aJ is called the

bound of a. Since J is a maximal integral domain of a simple algebra,

every nonzero element of / is bounded. Further, since every integral

quaternion a can be written in the form a = r(l+i)"c where r is a

rational integer, e = 0 or 1, and c is an odd primitive quaternion [l],

the generator of the bound of a is of the form r(l+i)e-N(c).

3. Characterization of similarity. It is easily seen that if N(a) = 2,

a^b if and only if N(b)=2. If N(a)>2, the number of residue

classes in J — aJ equals N2(a), from which it follows that if a «¿>, then

N(a)=N(b).

It is known that in a principal ideal domain D a necessary and

sufficient condition for 7>-isomorphism of any two finitely-generated

7>-modules is that the totality of bounds of the indecomposable com-

ponents3 that occur in a decomposition of one of the modules coin-

cides with the totality of bounds occuring in a decomposition of the

other (cf. [6, p. 79]). An integral quaternion is indecomposable if and

only if either it is primitive and its norm is a power of an odd ra-

tional prime or else its norm is a power of 2. Then, since two inde-

composable integral quaternions are similar if and only if they have

the same bound, we get as a consequence a specific characterization

of similar quaternions in the following theorem.

Theorem 1. Two integral quaternions are similar if and only if they

have the same norm and bound.

4. Determinant of a matrix over /. The concept of determinant is

usually associated with matrices over a field. The extension to a

division ring given by Dieudonné [2] in which the determinant is

defined in terms of the cosets modulo the commutator subgroup of

the nonzero elements will be used here. In this the mapping

.4—»det (A) is a homomorphism onto an abelian group, which, for

the case of matrices over real quaternions, is essentially a homo-

morphism onto the set of non-negative real numbers. Many of the

usual properties of determinants are carried over, in particular

det (.4)-det (73)=det (AB), and det (A) is an invariant under the

usual elementary row and column operations.

If the full facilities of the division ring of real quaternions are used,

' A module is indecomposable if it cannot be written as a direct sum of two non-

intersecting modules.
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a matrix A is equivalent to a diagonal matrix D= {l, 1, ■ • • , 1, d]

with [N(d)]m = det (7>)=det (A), m^O being an arbitrary real

number. If a matrix A is equivalent to a diagonal matrix

B= [bi, b2, ■ • • , bn], then det (A) = IIi-W(M]m. Since any matrix

over / may be reduced by elementary row and column operations in

J to a diagonal matrix, its determinant will be a non-negative integer

independent of the division ring used. If we set m = l, then det (.4)

is equal to the product of the norms of the diagonal matrix equivalent

to A. For this case the notation det (.4) = VA will be used, while if

A is real, det (.4) will represent the ordinary determinant of A.

With a matrix A having real quaternions as elements there is an

associated matrix formed by replacing in A each quaternion by its

regular representation, the (real) regular representation of A, and

will be denoted by the symbol Ä. Then det (.4) = (VA)2.

5. Hadamard matrices. In 1893 Hadamard [4] proved that if the

absolute values of the elements of a real or complex matrix of order n

are bounded by one, then the absolute value of the determinant has

as an upper bound nn'2, and he raised the question of the values of n

for which this bound is attained. For the complex case the answer is

known, but for real matrices the complete answer is not known. It is

easily seen that for a real matrix we may as well assume that all

elements are ± 1, and it is necessary that n be one, two, or a multiple

of four. Further, a necessary and sufficient condition is that A AT

= nln where 7„ is the unit matrix of order n. A matrix satisfying these

conditions will be called an Hadamard matrix. Explicit formulas for

the construction of several classes of such matrices have been given

by Paley [8] and Williamson [lo].

Consider a matrix A of order n with elements chosen from the

sixteen quaternions { +1 ± i ±j + k}. The regular representation Ä

of such a matrix will have elements ± 1. For A to be an Hadamard

matrix

(1) Ä-ÄT = 4w-74n.

Now the regular representation of the quaternionic conjugate trans-

pose A * oí A is the transpose of A. Thus for a matrix A satisfying

(1), V(AA*) = [det (ÄÄT)]1'2 = (An)2n. It is easily shown that VA

= VA* and thus V.4 = (4w)\ This is equivalent to V(A/2)=nn and

A/2 is a matrix with elements in /.Conversely, if 77 is a matrix of

order n each element of which is one of the set { +l+i+j + k] and

HH* = nI„, then 2H=A will satisfy (1) and 277 is an Hadamard

matrix of order 4w. Such a matrix H will be called a quaternionic

Hadamard matrix. This name is appropriate since Wallace Givens has
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proved (oral communication) an Hadamard type theorem for matrices

over real quaternions; if B is of order n and N(bi¡) _ 1, then VB =m".

Teichmüller [lö] has shown that any matrix over a principal ideal

domain is equivalent to a diagonal matrix [di, d2, ■ • • , dn] in which

each di is a total divisor4 of d¡ for j>i. For elements of J since 2 is

the only ramifying rational prime, if we write a and b in the forms

a = 2'-ri(l+i)m-ci, b = 2h-r2(l+iy-C2, where the r< are rational

integers, c¿ are odd primitive quaternions, we get the result that a

is a total divisor of b if and only if/ = A, f+m^h+s, and ri-N(ci)

divides r2. A diagonal matrix of the form above will be called a

Jacobson-Teichmüller normal form of any matrix equivalent to it.

Nakayama [7] has shown that if two matrices in Jacobson-Teich-

müller normal form are equivalent, then the corresponding diagonal

elements are similar. Further if the first diagonal elements are units,

the converse also holds. Thus in the case of a quaternionic Hadamard

matrix the diagonal elements of the Jacobson-Teichmüller normal

form are unique to within similarity.

6. Normal form of quarternionic Hadamard matrices. In order to

derive a canonical form for certain quaternionic Hadamard matrices

there will be needed a theorem on real Hadamard matrices.

Theorem 2. Let H be a rational integral Hadamard matrix of order

n=1r, where r is a product of distinct prime factors. Then the in-

variant factors, hi, of 77 are: hi = l, hi = 2 for Ki^2r, hi = 2r for

2r<i<4r and hir = 4r.

Proof. Since H has only +1 as elements, clearly hi = 1 and h2 = 2.

Now consider the orthogonal matrix T = n~1,2H. The determinant of

any (n — l)-rowed minor of Tis +n~112. Then the determinant of any

(« — 1)-rowed minor of 77 is «~1/2(«1/2)"-1 = (4r)2r~I and the g.c.d. of

the (w-1)-rowedminors is (4r)2r"1= ílniZ\hi = det (H)/hir = (4r)2r/hir

from which &4r = 4r.

Now det (H) = (4r)2r = hih2 ■ ■ ■ hir, and every hi divides hj, j>i,

so that h3, ■ ■ ■ , hir-i are even, and using the values of hi, h2, hir

we get r2r = (h3/2) ■ ■ ■ (hlr-i/2)(r). Every factor of any Ay/2,

j = 3, 4, • • • , 4r — 1, is a factor of r and the prime factors of h¡/2 are

distinct. Each prime factor of r therefore occurs in h2r+i/2, • • • ,

Ä4r_i/2 and does not occur in A2/2, • • ■ , A2r/2, which completes the

proof.

Theorem 3. Let A be a quaternionic Hadamard matrix of order n,

where n = pip2 ■ • ■ pk is a product of distinct odd primes.  Let D

4 We say a is a total divisor of b in a principal ideal domain D if DaDCZbDÍ\Db
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= {di, d2, • ■ • , dn\ be a Jacobson-Teichmüller normal form of A. Then

to within replacement by similar elements, di=l for i<(n + l)/2;

din+i)/2 = c, with c an odd primitive quaternion of norm n, dt = n for

(n + l)/2<iún.

Proof. Write á< = r,2/»(l+¿)e''Cj where r¿ is an odd rational integer.

Then since n is odd, /¿ = e¿ = 0. Thus di = riCi = p™lip2n2i • ■ ■ pkH-Ci

where the pi are distinct primes. Since d,- is a total divisor of dj, for

j>i, it follows that p?* ■ ■ ■ ptkiN(a) divides ffifi« ■ ■ ■ plhi for
7 > i. This requires that

(2) N(a) = pTpT ■ • ■ pT

and also

(3) mhi + sm =: mh,i+i

where A = l, 2, • • • , k and i = l, 2, • • • , n. Moreover, since VA

= lï=i r2fN(ci), we have

»
(4) 22 (2mhi + sm) = n, h = 1,2, ■ ■ • , k.

¿=i

Since n is odd, (4) implies that for every A and some i, sA<^0. Then

(3) and (4) allow us to conclude that, for every A, mhi = 0 for

iû(n+l)/2, and shi = 0 for t<(» + l)/2, so that di = d2= ■ ■ •

= d(n-i)/2=a unit, and d(n+i)/2 = C(n+i)/2.

Let r = (w + l)/2. We now want to show that N(cT)=n; that is,

in (2), Shi=l for i = r. Evidently Sf¿T = l for every A, since otherwise

(3) would imply an inequality in (4). If sat = 1, then m*yi£l, for

j>t. To prove the theorem it will be sufficient to show that Sat = 1

for every A. This result is obtained by making use of the regular

representation of A.

Let PAQ = D= [di, d2, • • • , dn\ and we can require the di to

have rational integral components. D has a Smith normal form,

{l, 1, • • -, 1,1,1, N(cT), N(cT),rT+irT+i,rT+lN(cT+i),rT+1N(cT+i), ■ ■ -,

rn, rn, rnN(cn), rnN(cn)\, where there are 2(n — l) + 2 l's. Now

875 = (273)(2i")(2Ö) and 2P, 2A, and 2(5 have rational integral ele-

ments, so that the greatest common divisor of the A-rowed minors of

2A is a divisor of every A-rowed minor of 87>. Therefore the greatest

common divisor of the A-rowed minors of 2A divides 8A times the

greatest common divisor of the A-rowed minors of D. However, since

A=RDS for matrices R and 5 over J, iÄ = (2R)(D)(2S) and a

similar argument shows that the greatest common divisor of the

A-rowed minors of D divides 2h times the greatest common divisor of
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the A-rowed minors of 2^4. Hence the common divisors in question

must differ at most by a power of two.

By Theorem 2, 2Ä is equivalent to B= [bi, b2, • • • , bin] where

¿»i = l, bi = 2 for Ki^2n, b{ = 2n for 2n<i<4n, and £>4n = 4tt. Hence

the g.c.d. of the A-rowed minors of B differs from those of 87) by at

most a power of two.

We now set A = 2w + 2. The greatest common divisor of the A-rowed

minors of 2Ä = H<_i £s = 22n~1(2ra)2. The greatest common divisor of

the A-rowed minors of 87) is 82n+2N(c2r). Thus 22"-1(2ra)2 divides

82n+2N(cf), and since n is odd, this requires that n2 divide N(cf), or

n divides N(cT). Thus, in (2), Sa = 1 for all A, which completes the

proof.

As an immediate consequence of the argument presented in the

proof of the theorem we have an extension of a well known theorem.

Theorem 4. If U is a unitary matrix over the real quaternions

(that is, UU* = I), then the determinant of any r-rowed minor of U is

equal to the determinant of its complementary minor.
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