
A NOTE  ON BERNOULLI NUMBERS AND  POLYNOMIALS
OF HIGHER ORDER

L. CARLITZ

1. Introduction. Following the notation of Nörlund [5, Chap. 6],

we defined B^, B(^(u) by means of

(1.1) (——Y«1» - E BÏ\u) —,    B™ = Blï\0) (k = 1).
V1 - 1/ m=o ml

In the present paper we prove a number of theorems concerning

Bm(u). It will be convenient to employ the abbreviations

(m)k = m(m — 1) ■ ■ ■ (m — k + 1), (m)0 = 1,

[m]t = (a™ - l)(a—» - 1) • • • (a»"**1 - 1),     [m]0 = 1.

In the following theorems p denotes an odd prime; the rational

numbers a, u are integral (mod p) and p\a. We now state the follow-

ing theorems.

Theorem 1. The number

(1.3) U™ = [m]kB^(u)/(m)k (m = k = 1)

is integral (mod p).

Theorem 2. If k<p — l, m^O, 1, • • • , k — 1 (mod p — 1), w^i

= 1, /Ae« B%)(u)/(m)k is integral (mod p). 7« particular B^(u) is

integral (mod £).

Theorem 3. 7/ k<p — 1, m^O, 1, • • ■ , ¿ — 1 (mod £ —1), tw=^

èli />r| (»*)&, /Aew ¿Ae numerator of B„(u) is divisible by pr.

Theorem 4. Leí U„ have the same meaning as in (1.3). 7/

fr-l)^-1!^, m^rb+k, ¿ = 1, then

(1.4) E (-1)M( f V--T.» ■ 0 (mod ¿").
8=0 \   J   /

Theorem 5. Pm/

(1.5) rl*' = Bu\u)/(m)t (ffi.U 1).

If k<p-l, m^O, 1, • • • , ¿-1 (mod £-1), m^rb+k,then
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(1.6) ¿ (-1)M ( ' ) T(Zh m 0 (mod p\
8=0 \S /

Theorem 6. If k<p — 1, m^áO, 1, • • • ,k — l (mod p —I), m^rb+k,
r^k, then

(1.7) E (- DM f f ) BlïUu) = 0 (mod pr'k) ').
8=0 \ s /

Theorem 7. If k^p — 1, m=s0 (mod £-1), 0;íso = ¿ —1, /Äew
4-80

(-1) (»î)fc       (k   —    1>
(1.8) pBm (u) m -      — ( ) B„ (u) (mod f).

(« —   1)1   ÍM —  J0\     So     /

Theorem 8. Let m=s0 (mod p — 1), 0^s0<p — l. If so^O, then

(p) (m)v        aa
(1.9) pBT(u) m -^- u   (mod #) ;

OT — So

in particular if p\m — so, then

PBZ\u)**-u«.

However, if So = 0, then

<„) / 1 u*-1 - 1  \
(1.10) pB¿? (u) m (m)p ( — +-■-) (mod p) ;

\m      m — p + 1/

in particular if p\m, then pB%\u) = — 1, if p\m + l, then pB%\u)

= l-uf~\

For references in the case k = l, see [l, Chap. 1; 2; 3; 4, Chap.

14; 6]. Vandiver [ó] has also discussed the case k = 2; indeed his

numbers of the second order are somewhat more general.

2. Proof of Theorem 1. Let r\(x) denote a (formal) power series of

the type

(2.1) I + 22 c™(ex - l)m,
i

where the cm are integral (mod p). Put

(2.2) g(x) = (^-^) v(x).

If for brevity we define Srg(x) recursively by means of

sg(x) = g(ax) - g(x),        dr+lg(x) = org(ax) - a'ôrg(x),
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then in the first place, we have

/    ax    \* /     x    \h xh
og(x) = (--) v(ix)  - (--) ri(x)  =- ;Vi(x),

\cax - 1 / \ex - 1/ (ex - I)*"1

as is easily verified; here vÁx) represents a series of the form (2.1).

At the next step we find

akxk axk

&2g(x) =-TTTTiH^x) - -,-7Z7~,i)M
(ex — l)*-1 (eax — 1)*_1

xk

=-mix),
(ex- l)4"2

where 772^) is also of the form (2.1). Continuing in this way, we

finally get

(2.3) okg(x) = xk-nk(x),

where of course Vk(x) is of the form (2.1). Now let i)(x) =exu in (2.2);

then it is clear from (1.1) that

bkg(x)       A   [«]*flifc)(«)      at—* A    <k)    x™

x* m=k (m)k (m — k)l       m=o ml

Now on the other hand it follows immediately from (2.1) that

00

77(0;) = rik(x) = E Kxn/nl,
n=0

where the bn are integral (mod p). Comparison with (2.3) and (2.4)

yields the theorem.

3. Proof of Theorems 2 and 3. Suppose now that a is a primitive

root (mod p) ; then it is clear from the hypothesis of Theorem 2 that

none of the factors ak~{— 1, i = 0, 1, • • • , k — 1, is divisible by p.

Consequently [m]k is prime to p and thus Theorem 1 implies Theo-

rem 2.

In the next place, let pr\ (m)k. Since, as we have just seen, p\ [m]k,

it follows from (1.3) that B*\u)=0 (mod pr). Hence Theorem 3

follows.

4. Proof of Theorem 4. We note first that for tj(x) as defined by

(2.1), we have

v(x) = 1+ E^E(-i)'-8(   )E-— •
<=i     ,_o \ s / „,_o    ml
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Hence if we put

00

rj(x) = 1 + E dmxm/ml,
m=l

it follows that

(4.1) á„-¿Ci¿(-l)>-(     )s" (n^m),
1=1       8=0 \ s /

since the inner sum in the right member of (4.1) vanishes for n>m.

Then clearly

¿(-^'f')***»- ¿c<E(-i)t-f,)(í-i),ím.
,=0 \J   / í=l 8=0 \   S   /

where of course the outer sum in the right member is finite. It follows

at once that

(4.2) E (-l)r-)Y' )dm+it, = 0 (mod p»)
7=0 \ J /

provided m^rb.

Turning now to ¡7*', we get from (2.3) and (2.4) that bkg(x)/xk

is of the form 77 (x) and that the general term in the expansion is of

the form U^+kxm/ml (m^O). Thus we may take dm= £/*}t, and (4.1)

and (4.2) apply. In particular (4.2) implies

(4.3) E (- ïT'( r. ) uZk+ii, = 0 (mod /')
i-o \J /

provided m¡±rb. If we replace m + k by m, it is clear that Theorem 4

holds.

5. Proof of Theorem S. If we substitute from (1.3) in (4.3), we get

,.,> A.     .,    .( r \ [m + jb]kBm+ib(u)
(5.1) E (-!)"-'(.)-;-—^-s 0 (modi")

i=o \j / (m + jb)k

provided m^rb+k. Suppose now that a is a primitive root (mod p)

such that a"-1 = 1 (mod pw) for an arbitrarily assigned w. By Theorem

2 we know that Bm+Jb(u)/(m+jb)k is integral. Hence it suffices to

take w = re, so that

[m + jb]k m [m]k (mod p»)     (j = 0, 1, • ■ • , r).

Thus the left member of (5.1) is congruent to
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M*¿ (-I)'"'!   . )Bnlib(u)/(m + jb)k (mod /*).
i-o \j /

Since ijfw]*, (1.6) follows immediately.

6. Proof of Theorem 6. We make use of a device employed by

Nielsen [2, Chap. 14]. Let

A r-. / r \ ( m + sb \

(6.1) AriQ=22(-D     [s)[ )T
Ik)
m+8b,

so that Ar¡0 denotes the left member of (1.6) and Ar,k the left mem-

ber of (1.7). We require the recursion

(6.2) (m+ rb - q)Ar,q + rbAr-i,q = (q + l)Ar,t+1,

which is easily verified by substituting from (6.1). Now by the last

theorem i4r,0 = 0 (mod pre); hence repeated application of (6.2) leads

to

(6.3) Ar,q = 0 (mod p^-i)e)

provided q^r, q<p. In particular if we take q = k in (6.3), Theorem

6 follows at once.

7. Proof of Theorems 7 and 8. We shall require the following

formula [5, p. 148, (87)]:

,„ <s     DW^       1/w\v,       k-i-8/k - 1\ Bm_s(u)     (
(7.1)    Bm (u) = k[     JE(-l) ( )-B>

\k / 8=o \    s    /  m — s

where Bm(u) =B^(u) ; we also need

(«)>

(-1 (P - l\m),
(7.2) pBm(u)-*  \        (mod*) ; '

(.0 (p — l\m).

Now let «sso (mod p — 1), where O^so^k — 1. Since for s<k

W si        / d\k-l-°

(7.3) bI\u)=—-— (-) («-l)(«-2)..-(«-*+l),
(k — 1)1 \du/

it is clear that Bf\u) is integral (mod p). Thus if we apply (7.2)

to the right member of (7.1), we get

(A)

\ k/ \   So   / m — so

which is the same as (1.8).
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To prove Theorem 8, we again use (7.1). Then for k = p, So^O, it

is clear that (7.1) and (7.2) imply

pBm (u) = (-1)-— ( )-(mod/»).
(p — 1)1 \   so   / m — so

No\

and by (7.3)

Ci1)-*- 1)«

(p) si       /¿X"-1-»
B>   («)s7-^At)       («^-1)^«' (sip- I).

(p — l)l\du/

Thus

_<*).   . Wj       80
pBm (u) =-u    (mod p),

m — so

which is identical with (1.9).

As for the case s0 = 0, the only difference is that there are now two

terms in (7.1) to consider, namely, those corresponding to s = 0,

s = p — 1. Thus

(7.4)      pBm(u) = - —-—I — +-—--Bp-i(u)   ;
(i — 1)! \w      m — p + 1 I

but by (7.3)

B^lx(u) = (u - l)(u - 2) ■ • • (« - p + 1) s» z/-1 - 1.

Substitution in (7.4) yields (1.10).
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