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R. D. ANDERSON1

The purpose of this paper is to consider the class of continuous col-

lections of mutually exclusive compact continuous curves in the

plane. Throughout this paper we shall denote by G or G with a sub-

script or superscript a collection of this class with the property that

G with respect to its elements as points is a nondegenerate compact

closed point set. G has then the significance of being both a collec-

tion of continua and a point set itself.

By a continuous curve will be meant a nondegenerate locally con-

nected compact continuum. By a continuous collection will be meant

a collection which is both upper and lower semi-continuous. By a

(simple) chain will be meant a finite collection Xi, x2, ■ ■ ■ , xn of

open discs (i.e. interiors of simple closed curves) such that #,-•%

exists if and only if \i—j\ ikl and is the closure of an open disc (i.e.

a 2-cell) if it does exist. The x¿ are called links of the chain. A subchain

of a chain c is a chain whose links are links of c.

A chain c will be said to simply cover a set M if c* contains M and

if for no proper subchain c' of c does the closure of c'* contain M. Two

chains will be said to be mutually exclusive if no link of either inter-

sects any link of the other. A collection C of sets is said to be a

(closed) refinement of a collection C of sets if (the closure of) each ele-

ment of C is a subset of some element of C. An emanation point of a

continuum M is a point which is the common part of each pair of

some three nondegenerate subcontinua of M. A hereditary continuous

curve is a continuous curve each of whose nondegenerate subcon-

tinua is a continuous curve.

It is immediately clear that if G is connected, G contains uncount-

ably many elements and that only countably many can contain

triods [l]. Except for a countable number of elements, each element

of G must be either an arc or a simple closed curve. We denote the

elements of G which are neither arcs nor simple closed curves by

gii g2, gz, • ■ ■ ■ From the hypothesis of continuity of G it follows im-

mediately that no element of a connected G contains a 2-cell.

Theorem I. It is not true that both the collection of arcs and the col-

lection of simple closed curves are dense in G.
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Proof. We suppose the contrary. Then there exists an arc tu a

simple chain d which simply covers tx and is of at least eleven links

and of link diameter less than one, and two open sets di and d2 con-

taining the end points of h such that the d» lie in distinct end links of

Ci and intersect no other links of Ci. We consider the set F of all ele-

ments of G lying in c* and intersecting d\ and d2. F is open and

contains a simple closed curve j\ as an element. But j\ contains two

mutually exclusive arcs each intersecting dx and d2 and hence every

link of c%. Some arc t2 of F must then contain two mutually exclusive

subarcs each intersecting every link of C\, as the collection G is con-

tinuous, the collection of arcs of G is dense in G, and there exist

two mutually exclusive simple chains each a closed refinement of

Ci, the sum of the links of each of which intersects every link of Ci

such that, for some open subset 7\ of 7" containing^, every element of

Fi must intersect each link of both chains. By an iteration of the

above argument it follows that there exists a sequence of chains

Ci, c2, - ■ ■ such that "for each i, e,-+i is a closed refinement of c¿, d is

of link diameter less than 1/i, c* contains an arc ti of G intersecting

each link of c<, c* does not contain g¿, and c¿+i contains two mutually

exclusive simple subchains each of which intersects every link of c¿.

H = Ci* ■ c2* ■ c3* - - - cannot be an arc or a simple closed curve for 77

contains uncountably many mutually exclusive continua each of

diameter greater than some number. As H is the sequential limiting

set of the sequence of elements ti oí G, H must be an element of G,

and as H cannot be g¿ for any i, it must be an arc or a simple closed

curve. Thus Theorem I is established. We note here also that a simple

argument could be given to show that H is not even locally con-

nected.

We designate by a either the point at infinity u or any particular

point of the plane.

Lemma A. Iffi, f2, f3, ■ ■ ■ is a sequence V of elements of a collection

G such that, for each i, /¿+1 separates j\ from a in the plane, then V has

a sequential limiting set k which is an element of G and which either

contains a or, for each i, separates /,- from a.

Proof. We note that for i >j, fi separates f¡ from a. Some subse-

quence V of V has a sequential limiting set k' which from the as-

asumption of continuity of the collection G is an element of G. Let

k" be the sequential limiting set of some other subsequence V" of

V. We wish to show that k' = k" and therefore that k' is the sequential

limiting set of V itself. For any element fnj of V, k' either contains a

or separates fnj from a, for k' is the common part of a monotonie se-
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quence of closed and compact sets each either containing a or sepa-

rating fn¡ from a. If some point P of k' is not a limit point of the sum

of the elements of V", then it readily follows that, for some i>j,fi

does not separate /, from a as no point of k' is separated from a by

any element of V. it follows that k' is the sequential limiting set k"

of V" as V" has by hypothesis a sequential limiting set. By the

argument suggested above for V, k( = k' = k") must contain a or

separate each element of V from a.

Lemma B. If g an element of G is a limit element of each of two sub-

sets Gi and G2 of G, with G* and G* lying in distinct complementary

domains of g in the plane, then g is a simple closed curve.

Proof. This lemma follows immediately from the continuity of

the collection G, the elementary separation properties of a simple

closed curve in the plane, and Theorem2 41 on p. 216 of reference [2].

Lemma C. If in addition to the hypotheses of Lemma A it is also

supposed that G is connected and k does not contain a, then any non-

degenerate subcontinuum G' of G which contains k and contains no

element of G not separated by k from a must contain some term of V.

Proof. It follows from Lemma B that G'* — k and/i+/2+ • • • all

lie in the same complementary domain of k. But then there exists an

arc 5 in such complementary domain of k from a point of G'* — k to

some point of some /¿ such that 5 does not intersect any //, j>i.

Otherwise s must intersect k. But then/,+i does not separate /< from

a, contrary to hypothesis.

Lemma D. If G does not contain any arcs as elements and is con-

nected, then G does not contain two elements such that neither separates

the other from co in the plane.

Proof. Suppose the contrary and let A and B be such elements.

There is a continuum G' in G which contains A and B and is ir-

reducible with respect to being a continuum and containing A and B.

From Lemmas A and B or C with a straightforward argument it

follows that if there is any element of G' separating A from u and

not separating B from co, there is an element A' doing this such that

no element of G' separates A' from co and does not separate B from co.

We note that B is not A' and we denote by A" the set A if no A'

exists or A' if such does exist. Similarly we define a set B" with respect

to A" and co. But as G' contains A" and B" and is irreducible with

1 If D and E are two complementary domains of a compact continuous curve M,

the outer boundary of D with respect to £ is a simple closed curve.
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respect to being a continuum and containing A and B, it follows that

no element of G' not separated by A" from B and co and not sepa-

rated by B" from A" and co can separate the plane into two comple-

mentary domains each of which contains an element of G' such that

A" and B" are in the same complementary domain. But then as G'

is connected there must be uncountably many mutually exclusive

open sets in the plane, which is the desired contradiction.

Theorem ll.3 If G is connected and every element of G is a simple

closed curve, then G is an arc and G* is an annulus whose boundary

simple closed curves are the end elements of G.

Proof. From Lemma D we can conclude that of every three ele-

ments of G one separates the other two from each other and hence

G is an arc. The end elements of G do not separate G and are simple

closed curves. One separates the other from co. Hence they bound an

annulus A which contains the other elements of G. From the ele-

mentary separation properties of simple closed curves, Lemma A, and

the continuity of G, it readily follows that G* fills up A.

Theorem III. 7/ G does not contain any arcs as elements and is con-

nected, then G* contains a 2-cell.

Proof. From Lemma D we conclude again as above that G is an

arc. From Lemma B it follows that every cut element of G is a simple

closed curve. Hence for a subarc G' of G each element of G' is a simple

closed curve and Theorem II implies that G'* and hence G* contains a

2-cell.
Definition. A sequence C\, c2, c3, • - • of simple chains will be said

to be hooked provided that Ci contains an odd number ( > 7) of links

and there exists a point P in the middle link of cx and sequences

d2, d3, dl, - - ■ and d2 , d3 , dl', • ■ • of simple chains such that for

each i, (1) c,+i is a closed refinement of c,- and d'i+1 and d"+1 are closed

refinements of d{, (2) d'i+1 and á," t are mutually exclusive subchains

of ci+i, (3) exactly one link of d,'+1 contains P, (4) the end links of

d2 are in the end links of C\, (5) the end links of d¡+1 are in the end

links of d'i, (6) d2 contains a link in the link of Ci containing P

and a link in one end link of ft, and (7) d¡'+l contains a link in the

link of dl containing P and a link in one end link of d[.

An 6-sequence of chains is a sequence of chains C\, c2, c3, - - - with

the property that if e is any positive number, there exists a number

7Ve such that for j>Nt, each link of c¡ is of diameter less than e.

' Theorem II is a special case of Theorem 4 and Lemma 4.3 of reference [ö].
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Lemma E. If M is a continuum which is simply covered by each chain

of a hooked e-sequence of chains, then M is not locally connected.

Proof. That Lemma E is true follows from the observation that

every point P of a continuum M' in the intersection of the dl is a

limit point of the sum of continua Af¿ one in each set dl' and that

every sufficiently small open set containing P has infinitely many

components with no two points of distinct Mi in the same component.

Theorem IV. If G is connected and contains no simple closed curve

as an element, then G* contains a 2-cell.

Proof. Let ci be a simple chain of an odd number (>7) of links

simply covering an arc h which is an element of G and let dx and d2

be connected open sets one in each of the end links of Ci such that

di + d\ intersects the closure of no cut link of Ci and each d,- (i = 1, 2)

contains an end point of h. From the continuity of the collection it

follows that there exists a connected open set E containing ti and

contained in c* such that every element of G intersecting E lies in

E and intersects d\ and d2 (and hence every link of c{). Let Gi be a

subcontinuum of G containing h with Gf in E. Let m be the middle

link of Ci and suppose that m-G* contains no 2-cell. Let Si and s2

be arcs which lie in the closures of the end links of Ci each inter-

secting the boundary of cx exactly in its end points such that for each

i (i = l,2) Si separates ¿,- from m in the closure of c* and intersects the

closure of only one link of Ci and such that Si and s2 form together with

two arcs Zi and z2 of the boundary of c* a simple closed curve / whose

interior contains all non-end links of Ci and whose exterior contains

di+d2. Let H be a maximal set of mutually exclusive arcs such that

each has an end point and only an end point in common with each

Si and each is a subset of an element of Gi. Each element of Gi con-

tains at least one arc in H. Each arc A of 77 separates 7 = /+Int (/)

into two mutually separated connected sets and on the basis of this

separation property the elements of H form a totally ordered set.

The supposition that m-G* contains no 2-cell implies that there

exists a connected open set D in m with the property that H is the

sum of two uncountable mutually exclusive sets i7i and 772 such that

D is separated in 7 from z¿ by every element of Hi. We assume now

that no element of Gi contains two mutually exclusive elements of 77.

As Gi is connected and continuous, some point Q must be a limit

point of each of the sets 77i* and 772*. Then as follows from sequential

limiting properties there exist continua K~i and 7^2 each containing Q
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and each intersecting Si and s2, with Ki+K2 contained in an element

/ of Gi and with Kt separating D in 7 from each element of 77,- not

in K~i. Let K' be the component oí f-I which contains Ki+K2. K'

is locally connected and contains an arc r intersecting each set s< in

exactly an end point of r. K'+si+s2 separates D in the plane from

all elements of Hi or 772 not in K'. Let HI denote the set of all ele-

ments in 77,- not in K'. H{ * and H2 * are mutually separated and to-

gether with the set of elements of 77 in K', H[ and H'2 contain all ele-

ments of H. By Theorem 41 on p. 216 of reference [2] quoted above

the outer boundary with respect to co of the complementary domain of

K'+Si+s2 containing D is a simple closed curve Y. There exists an arc

r' of K' such that r' lies in 7, has exactly an end point on each set s,-,

and separates 77i' * from H2 * in 7, and such that K' contains a point Q

in m not in r'. That such r' exists may be seen by considering Y and r.

If we let Pi and P2 be the points of Y on r closest on r to si and s2

respectively and note that Y is the sum of two arcs yi and V2 from

Pi to P2 having just Pi+P2 in common, at least one of the sets yi and

y2 (say y¡) contains a point of m. Let r' be an arc which is contained

in r+y2, intersects yi in at most Pi and P2 and intersects each of the

sets Si and s2 in exactly an end point of itself.

As Gi is connected, / must be a limit element of each of the two

subsets of Gi whose elements contain elements of H{ and H2 respec-

tively. But then as the set of arcs of Gi is dense in Gi, there must be

an arc t2 of Gi which contains two mutually exclusive subarcs, one

in H and the other interesecting m and either si or s2. We also note

that the existence of such an arc t2 immediately follows if we assume

that some element of Gi contains two elements of H. There exists a

chain simply covering t2 and of diameter less than 1/2 which satisfies

all conditions for the second chain of a hooked sequence of chains

whose first chain is £i where the point P of the definition could be

any point of md2 . By an iteration of the above argument without

essential modification it can be established that there exists a

hooked e-sequence of simple chains c¿ each term of which simply

covers an element of G. But the common part of the c,- is not locally

connected by Lemma E and is locally connected as an element of G

by hypothesis. Therefore G* contains a 2-cell.

Theorem V. 7/G is connected, G* contains a 2-cell.

Proof. Theorem V follows immediately from Theorems I, III, and

IV.

Theorem VI. If G is connected, then G with respect to its elements as
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points is a hereditary continuous curve such that the closure of the set of

emanation points of G is totally disconnected.

Proof. Suppose some subcontinuum G' of G is not locally con-

nected at some point P. Then there must be a subcontinuum G" of

G' such that G' is not locally connected at any point of G" and such

that each point of G" is a limit point of G' — G". By Theorem V,

G"* must contain a 2-cell K. But as the collection G' is continuous

and hence as no element of G" containing an interior point of K can

be a limit element of G' — G", we have a contradiction. We therefore

conclude that G is a hereditary continuous curve. Suppose now that

the closure of the set 77 of emanation points of G is not totally dis-

connected and let H' be an arc in //. But as above 77'* contains a

2-cell and every point in 77' is a limit point of G — H' which implies

a contradiction similar to that above. Thus Theorem VI is established.

It should be noted that Theorem VI gives necessary but not suffi-

cient conditions which the continuum G must satisfy. Sufficiency

conditions would seem to be considerably more complicated. Pre-

sumably they would involve among other things use of Theorems I

and VI and Lemma C in conjunction with the well known theorem of

reference [2] that the continuous monotone image of a sphere is a

cactoid. Theorem VII of this paper establishes that if G is restricted

to being a subset of a plane, then the conditions of Theorem VI are

sufficient in this special case.

We now consider some examples of collections G in which G is an

arc and the elements of G are arcs.

Example 1. If Af is the unit square in the plane, the collection G of

vertical line intervals of length 1 in M is a continuous collection of

mutually exclusive arcs filling up M.

Example 2. If M is the unit square in the plane, there exists a

collection G' of mutually exclusive arcs filling up M in which the

intervals [(0, 1/2), (1/4, 1/2)] and [(3/4, 1/2), (1, 1/2)] are elements

of G' and each other element of G' has both end points on the bound-

ary of M, one with ordinate greater than 1/2 and the other with

ordinate less than 1/2.

Example 3. Let M be the set consisting of the interval I : [(0, — 1),

(0, 1)], the interval 7': [(2, -1), (2, 1)], the curves

Vi

IT

sin —, 0 < x S 1,
x

IT

■ sin-, 1 < x < 2,
2 - x
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y2

x/ÍO + sin —, 0 < x g 1,
x

(2 - x)/ÍO - sin-, 1 < * < 2,
2 — x

and those points on vertical line segments with end points in yi and

y2. Let G be a collection filling up M which consists of 7, 7', and

mutually exclusive arcs each of which lies in M and has exactly an

end point on yi and exactly an end point on y2 (and hence separates M)

with the x-coordinate Xi of the end point on yi and the x-coordinate

x2 of the end point on y2 satisfying the relationship x2 —Xi = 2xix2

whenever Xi and x2 are both less than 1/2 and x2 — Xi = 2(2— xi)(2— x2)

whenever Xi and x2 are both greater than 3/2. It is clear that such a

continuous collection can exist and will be an arc.

Example 4. Let M' be the set M of Example 3 plus those points

with 0^x5^2 and y3<y^2 with y3(x) the maximal ordinate of a

point in M for particular x. Let the collection consist of all arcs

each of which is an arc of G in Example 3 and a vertical interval from

M to the line y = 2.

It is not difficult to construct an example which is essentially a

modification of Examples 2 and 4 such that the collection G of

mutually exclusive arcs is again itself an arc, the set of points in the

boundary of M which are accessible from S—M is totally discon-

nected, and no local cross section of G exists. We also note that if N

in the plane is the Cartesian product of a Cantor discontinuum and

an interval, j is an integer, and u and v are components of N, there

exist j sets of the type of Example 3 with u and v as end elements,

each of the j sets intersecting N or any other of the j sets in exactly

u+v.

Theorem VII. If J is a plane hereditary continuous curve such that

the closure of the set of emanation points of J is totally disconnected,

there exist a continuum M in the plane and a continuous collection G of

arcs filling up M such that G with respect to its elements as points is

homeomorphic to J.

Proof. Let H be the set of all emanation points of J and E the set

of all end points of J. H+E is a closed and totally disconnected

point set, for if P not in 77 is a limit point of E, then it follows directly

that J is not locally connected at P and as this observation also im-

plies that E contains at most a countable number of points not in H,

it follows that H+E is totally disconnected. J—(H+E) is the sum

of a countable collection Q oí mutually exclusive connected sets open
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relative to J each a subset of an arc having both end points in H+E.

For any €>0 not more than a finite number of elements of Q are

of diameter greater than e (as / is a hereditary continuous curve).

By [3] there exists in the plane an arc t containing H+E. It is

possible that t may intersect J in points other than H+E and in fact

may have nondegenerate continua in common with J. Let V be an

open curve containing t. There exists an open curve V containing

H+E such that V-J is totally disconnected. That such a V exists

may be easily demonstrated by considering a slight modification of

V. Let V-J = N. There exists a homeomorphism of the plane onto

itself carrying V onto the x-axis, J onto a set J', and A7, onto a set N'

on the interval [(0, 0), (1, 0)]. J' is the sum of N' and a countable

collection R of arcs ki, k2, k3, - - - each having its end points in N'

and having no other points on the x-axis. For any €>0 at most a

finite number of the elements of R are of diameter greater than e

and no point not in N' is common to two elements of R. Let Z be the

set of all vertical intervals of length one with midpoints on N'. M

will consist of Z + 22™-1 Mi where, for each i, Mi is a set to be defined

in terms of  22*-1 Mj and the set ki.

Mi is to be a set of the type of Example 3 whose end elements are

the elements of Z containing the end points of k\. Mi is to contain no

points with y< —1/2 if ki lies (except for its end points) above the

x-axis or no points with y>l/2 if ki lies (except for its end points)

below the x-axis. Mi is to contain no point with \y\ > 1/2 + the dis-

tance between the end points of ki, Mi-Z is to be exactly the two

elements of Z containing the end points of ki, and the projection of

Mi on the x-axis is to be the interval whose end points are the end

points of ki. It is clear that such a set Mi can exist and from the

definition of il7i that there exists a set Gi of arcs filling up Mi such

that Gi is an arc whose end elements are in Z. If 22*j=\ Mj is defined,

then Mi and G¿ can be defined similarly from ki as were Mi and Gi

from ki with the added condition that M, does not intersect 22)-\ Mj.

That such an Mt always exists follows in part from the fact that, for

*Vj, ki does not intersect k¡ in a cut point of either, and that for

any i, ki lies except for its end points entirely on one side of the

x-axis. The set G is the set Z+ 22î-i £«'• It 1S clear from the con-

struction outlined above that M is a compact continuum and that

G is homeomorphic with J.

Theorem4 VIII. If M is a 2-cell and G fills up M, then G is an arc.

Proof. G must be a dendron, for G is a hereditary continuous curve

4 G. S. Young has announced a result [5] which implies Theorems VIII and IX.
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by Theorem VI and the collection F consisting of the elements of G

and the individual points of S — M (where 5 is a 2-sphere containing

M) must by (4) be a cactoid 2. But the elements of F not in G form

an open disc in 2, and if G contains a simple closed curve it must

contain an interior of such simple closed curve in a sphere of 2 and

hence G must not contain a simple closed curve. If G contains a

branch point g, then g separates G* into at least three complementary

domains and it follows from Lemma B that at least two, say 7>i and

£>2, must contain points of the boundary of M. But then some arc

t of g with exactly its end points on the boundary of M must separate

Di and D2. Then g must be t from the continuity of G and separation

properties of arcs and simple closed curves and hence g is not a branch

point. Finally, as a dendron without branch points is an arc, Theorem

VIII is established.

Theorem IX. If F is a continuous collection of mutually exclusive

locally connected compact continua filling up the plane S and there exist

two elements of F which do not separate S, then all elements of F are

degenerate.

Proof. It is clear from the continuity of F that if F contains a non-

degenerate element, the set E of all nondegenerate elements of F is

open in F. We assume that E exists. If F' is the one point compactifi-

cation of //then, by [4], F' is a cactoid. If F' contains a 2-sphere U,

then some element of F' in U is also in E and as E is open in F' there

exists a 2-cell in U each of whose points is an element of E. By

Theorem VI this is impossible and hence F' is a dendron. But F' by

hypothesis contains at least three elements not separating F' (one the

point in F' not in F) and hence F' contains a branch point P, but

from Lemma B, P must be a simple closed curve (for it must separate

the plane as F fills up the plane) and then from elementary separation

properties of simple closed curves P cannot be a branch point of F'.

Thus the set E cannot exist under the hypotheses of the theorem

and Theorem IX is established.

Theorem X. If F is a continuous collection of mutually exclusive

compact locally connected continua filling up the plane S, then either G is

the collection of all points of S or G is a ray the end element of which

does not contain a simple closed curve (and may be degenerate) and all

other elements of which are simple closed curves.

Proof. Theorem X can be readily established from Theorem IX

and Lemma B.
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DIMENSION AND DISCONNECTION

BYRON H. MCCANDLESS

Let X be a semi-compact separable metric space. We shall prove

the following theorem using results found in Hurewicz and Wallman's

book Dimension theory (Princeton University Press, 1948):

Theorem, dim A" = « if and only if any closed subset of X containing

at least two points can be disconnected by a closed set of dimension

S»-l.

The necessary and sufficient condition stated in the theorem was

found in looking for an «-dimensional analogue of the property of a

space being totally disconnected (property a0 below) and will be de-

noted by a».

Hurewicz and Wallman show (p. 20) that the following three prop-

erties of the space X are equivalent:

«o. X is totally disconnected.

pV Any two points in X can be separated.

7o. Any point can be separated from a closed set not containing

it, that is, dim X = 0.
They also show (p. 36) that the following «-dimensional analogues

of ßo and 70 are equivalent:

j3„. Any two points in X can be separated by a closed set of dimen-

sion _^w —1.
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