EQUATIONS EQUIVALENT TO A LINEAR
DIFFERENTIAL EQUATION

J. M. THOMAS

1. Introduction. Pinney [3] has remarked that the nonlinear equa-
tion y”'4-gy =cy—3, where ¢ is a function of the independent variable
x and ¢ is a constant, can be solved by the substitution y2=u2—1?,
where %, v are appropriately chosen solutions of the linear equation
u''4qu=0. This suggests the question: what equations of order =
have general solution expressible as F(u,, - - -, #,), where uy, - - -, u,
constitute a variable set of solutions of a fixed linear differential
equation? The present paper gives a partial answer to this question
by determining all equations equivalent to linear equations (i) which
are of the first order; (ii) which are homogeneous, of the second order,
and have F depending on only one %; and (iii) which are homogeneous,
of the second order, and have F homogeneous of nonzero degree in
two u's.

Moreover, it is shown that:

The nonlinear equation

(1.1) 9" = (og w)'y' + kgy = (1 — Dy~'y"* + cwy'~*, k=1,

where ¢, k are constants and w, g are functions of the independent vari-
able x, can be solved by putting

(1.2) y? = ukpk, ¢ £ 0; y=uk ¢=0,
where u, v satisfy the linear homogeneous equation
(1.3) u'’ — (log w)'w’ + qu = 0.

The function F giving the solution of (1.1) can be found by inte-
grating a special equation of form (1.1) which has w'=¢=0 and can
be treated by elementary methods.

Pinney’s result is got by making k=w=1 and replacing %, v by
u—ov, utv.

Equations (1.1), (2.3), and (3.2) may represent new integrable
types. Equation (1.1) resembles equation 6.53 of Kamke’s collection
[1, p. 554], but the fields of application merely overlap. If in (3.2)
», g are properly related, Kamke's 6.53 results.

For ¢=0, the result that equation (1.1) can be solved by the sub-
stitution (1.2) is Painlevé’s [2, p. 35, equation (1)].
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2. First order. If « satisfies the linear nonhomogeneous equation
2.1) W putg=0
and y = F(u), then
¥y + (pu+ qF' = 0.
Set

F@ = 1), = [

The general form of first order equation integrable by the process of
this paper is therefore

2.2) y + (p [ 113+ q)f ~ 0

and the F is found by integrating
F' — f(F) =0,

which is the special form assumed by (2.2) for p=0, ¢=—1.
Any equation

(2.3) ¥ + p(2)8(y) + ¢(x)f(y) = 0
satisfying either of the conditions
(2.9 flef D' =1, gfg)=1

falls in this category.
For f=9", n31, equation (2.2) becomes Bernoulli’s.

3. Second order, F in one variable. If
y = F(u), w' + pu' + qu = 0,

then
¥+ py = — uF'q+ F'(F)7y".
Setting
3.1 g(F) = uF’
gives
(3.2) v+ 0y + a8(y) = [¢() — 1[N ]y2

The class sought consists of those equations which can be put in the
form (3.2). For a given equation an F is found from (3.1). Note that



1952] EQUATIONS EQUIVALENT TO A LINEAR DIFFERENTIAL EQUATION 901

F also satisfies
(3.3) F' = [¢(F) — 1][g@®)]F,

the special form of (3.2) for p=¢=0.

If F is homogeneous of degree k70, then F can be taken as u*
and (3.2) assumes Painlevé’s form [2, p. 35, equation (1)] which is
also (1.1) for ¢=0.

4. Second order, homogeneous. The problem involves eliminating
u, v, ', v, w, v among

“4.1) y = F(u, v),
y = w'F, + v'F,,
¥y’ = u'Fy+ V'Fy + 4/ °Fuu + 20'VFyy + 0'%F,,

w4+ pu' 4+ qu = 0, v 4 pv' + qv = 0.
If we put
z=uF,+ oF, w=uw —uv, 24’ =uy — wF, 2z =10y + wF,
this operation is reduced to eliminating u, v between (4.1) and
(4.2) y'+py = —gz+ Ay*+ 2By'w + Cw?,
where
@3 54 = UFus+ 200F sy + 0 Fp, 2C = FoFuy — 2PuFF urt FuF o,

2B = Fy(uFuy + tFys) — Fo(UF uu + 1F ).

By hypothesis, (4.2) is to reduce to f(»”, %', ¥, P, ¢) =0, where
y", 9, 9, b, q are indeterminates. This entails that the right member
of (4.2) reduce to a function of y by virtue of (4.1) when ¥, p, ¢ are
independently given arbitrary values. The indeterminate p can be
replaced by w, subject to the restriction w0, since

(4.9 w 4+ pw = 0.

Making y'=¢=0, w=1 shows that C must be a function of F;
¥’ =0, g=1 in the first three terms gives z=3(F); ' =0, w=1 in the
second and third divided by y’ gives B =B(F);and ¥’ =1 in the second
gives finally A =A(F).

The condition that z be a function of F is B=0. For all such z

Fyy + Fy, = (z — )Fy, uFy, + vF,, = (& — 1)F,, % = dz/dF.

Direct substitution gives
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4.5 A=@F -1z B=0, C= (& — 1) 2 FusFoo — Fo),

the expression for C failing if /=1 and those for 4, C if 2=0.

Now assume that F is homogeneous of degree %, where k0. Then
2=kF30. The definition (4.3) shows that C is homogeneous of de-
gree k—4. Setting

(4.6) F = u*G(u ')
and expressing the homogeneity of C give
C(m*u*G) = m**C(u*G).
Make u =1, replace m by u, replace v by #~lv and get
C(u*G) = u**C(G).

Evaluate for u~lv =g, replace u by [FG(a)~!]}, where kl=1, and find
(4.7) C(F) = cF\—4,

Except for the constant ¢, which remains arbitrary, the equivalent

equation (1.1) is completely determined.
To find F, seek G. From (4.6), (4.7)

C(F) = cu*tG'—4,
Substituting (4.6) in (4.3) gives
C(F) = u*4[G" — (1 — )G1G"].
Hence G is a solution of the equation
(4.8) G’ = (1 — )G'G? + G4,

a special case of (1.1) with ¢=0, w=1.

The independent variable does not appear explicitly in (4.8). By
the usual elementary artifice that equation can be reduced to a linear
equation of the first order in the dependent variable G’? and the
independent variable G. It is sufficient here to note that

4.9) G = (—4l) 4 (uw)*? ¢#0; G=1, ¢=0

are particular solutions.

The case ¢ =0 is straightforward. One variable serves, but another
formula with two can also be obtained.

If ¢5£0, the constant appearing in (4.9) can be absorbed in # as
it appears in F. To see this, suppose ¥y given by (1.2) with %, v solu-
tions of (1.3) whose Wronskian W has initial value W, satisfying

(410) Wy = 2(—16)1/2‘100 # 0.
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Then W=2(—Ic)Y?w. Either examination of the steps leading to (1.1)
or direct substitution verifies that (1.1) is satisfied by such a y.

Initial values for %, v giving prescribed initial values yo, ¢ and
satisfying (4.10) are

21

%o = Yo ,
’ 2l-1 1/2
o =1 — (=1lc)  w,,
(4.11) 0= 1Iyo 30 = (=l0) "w
Vo = 1,
-1 / -21
v = Iyo yé + (—lc)1 2woyo (c £ 0).

If the above expressions for g, 9o, %g, v are multiplied respectively
by a7, a, a7}, a, where a0, the same values yo, y5, Wy result. This
corresponds to the fact that of the four constants in the pair %, v
only three have been expended.

It will be noted that the constant ¢, when not zero, can be ab-
sorbed into w in (1.1), its role being simply to distinguish the two
cases.

The case k=0 does not yield directly to the method of this paper.
If £=0, then F is a function of a single variable #~'v but, contrary
to what is true in §3, that variable does not satisfy a given linear
equation.
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