
ON THE INTEGRATION OF DIFFUSION
EQUATIONS IN RIEMANNIAN SPACES

KÔSAKU YOSIDA

1. Introduction. Let R he a connected domain of an infinitely dif-

ferentiable, orientable, w-dimensional (m ^ 2) Riemannian space with

the metric ds2 = gij(x)dxidx1'. Under a certain "continuity condition"

of Lindeberg's type, the temporally homogeneous stochastic process

in R is governed by a pair of equations:1

,.   ., df(x, t) d2f(x, t) df(x, t)
(1.1) -= bll(x)--\-al(x)-> i^O,

ai cVcV dxi

(1.2)

dh(x, t)        i        a2
-^T-= TT^iT* T^Tl ^(x)y'2b-(x)h(x, t))

dt (g(x))1'2  dxldx'

-^((g(x)y'2a<(x)h(x,t)),        i£0.
(g(x)y>2 dx*

These are called the "backward diffusion equation" and the "forward

diffusion equation" respectively, the latter being sometimes called

the Fokker-Planck's equation. In these equations, the symmetric

contravariant tensor bif(x) is assumed to be such that the quadratic

form bij(x)ppj is, for ^< £?>0, greater than 0 in R and a{(x) is as-

sumed to obey, in the coordinate change x—*x, the transformation rule

dx* d2^
(1.3) a\x) = — a«(x) + ——- **•(*).

dx" dxkdx'

Hence the two elliptic differential operators on the right-hand sides

of (1.1) and (1.2) are formally adjoint to each other and they have a

meaning independent of the local coordinates (x1, ■ ■ • , xm). We as-

sume that the coefficients gij(x), a{(x), and ¥'(x) are infinitely dif-

ferentiate functions of the local coordinates (¡e1, • ■ • , xm).

The purpose of the present note is to prove the following three

theorems.

Theorem 1. Let R be a compact Riemannian space. Then, to any

function f(x), infinitely differentiable in R, there corresponds a uniquely

determined solution f(x, t) of (1.1) satisfying the conditions:
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1 A. Kolmogoroff, Zur Theorie der stetigen zufälligen Prozesse, Math. Ann. vol.
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(1.4) lim f(x, t) = f(x) uniformly in x,
tlo

(1.5) min/(x) ^ f(x, t) — ma.xf(x), and
X X

max f(x, t) = max f(x) when f(x) is non-negative.
X X

Theorem 2. Let R be a compact Riemannian space. Then, to any

function h(x), infinitely differentiable in R, there corresponds a uniquely

determined solution h(x, t) of (1.2) satisfying the conditions:

(1.6) lim((o/ß|A(x,/) — h(x)\dx = 0,wheredx = (g(x))1,2dx1 • • •dxm,

g(x) =det (gij(x)),

(1.7) fR\h(x, t)\dx^fR\h(x)\dx,
and h(x, t) is non-negative with ¡Rh(x, t)dx=JRh(x)dx when h(x) is

non-negative.

If R is a connected domain with the smooth boundary dR, Theorem

2 is extended to the following theorem.

Theorem 2'. Let D be the totality of infinitely differentiable functions

h(x) in R with compact carriers (supports in the terminology of L.

Schwartz) satisfying the boundary condition on dR :

dh
(g(x))ll2bi'(x)-cos (n, x>)

dxl

(1.8)
/d(g(x))l'2bi'(x) \

+ (^-^-— - (g(x)yi2a'(x) ) cos (n, x')h(x) = 0,
\ dxl I

(n denotes the outer normal). Then, to every h(x) ED, there corresponds a

uniquely determined solution h(x, t) of (1.2) satisfying the conditions

(1.6)—(1.7) if and only if the following hypothesis is satisfied:

The hypothesis. Let {Rk} be a monotone increasing sequence of

connected domains Ci? such that the boundary dRk tends smoothly, as

k—»oo, to the boundary dR. Then, for any m>0, the equation

d2f(x) df(x)
(1.9) ¥'(x) -^-L + a%x) -^-^- = mf(x)

dx'dx' dx%

does not admit a bounded solution f(x) f^O satisfying the boundary con-

dition

(1.10)        lim   f    (g(x))l'2bi'(x)h(x) — cos («, x')dS = 0
i-too   J BRk àXx

for all h(x) E D,
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dS denoting the hypersurface element of dRk.

These theorems may be proved by refining, with the aid of para-

metrix considerations, the operator-theoretical integration of the dif-

fusion equations given in the preceding notes.2 It is to be remarked

that our construction of the parametrix for the general diffusion

equation is carried out by an elementary calculation without ap-

pealing to the theory of integral equations nor to the power series

expansion. It is an extension of the construction due to S. Minakshi-

sundaram and Â. Pleijel.3

2. The construction of the parametrix. Let e(x) be an infinitely

differentiate function and let

d2 d
(2.1) A = A x = 4" (*)-+ a\x)-h e(x).

dx'dx' dx%

Let T=T(P, Q) =r(P, Q)2 be the square of the smallest distance of

two points P and Q of R according to the new metric dr2 = bij(x)dxidx',

where (bij(x)) = (bi'(x))~1. We have then the lemma.

Lemma 1. For any positive integer k, we may construct the parametrix

Hk(P, Q,t-r)

(2.2) /      T(P, Q)\   *
= (t - T)-W2 exp ( _ -i-L^) £ Ui(P, Q)(t - r)\ t > r,

\     4(f - t)/ i=o

such that

(2.3) Ui(P, Q) (i = 0, 1, • • • , k) are infinitely differentiable in the
vicinity of Q = P and u0(P, P) = l,

(-j--AQS\Hk(P,Q,t-r)

(2.4)

= (/ _ ry-mn exp \- -p^J ck(P, Q),

where ck(P, Q) is infinitely differentiable in the vicinity of Q=P.

s K. Yosida, Integration of Fokker-Planck's equation in a compact Riemannian

space, Arkiv. for Matematik vol. 1 (1949) pp. 71-75 (to be referred to as [l]). K.

Yosida, Integration of Fokker-Planck's equation with a boundary condition, Journal of

the Mathematical Society of Japan vol. 3 (1951) pp. 69-73 (to be referred to as [II ]).

K. Yosida, Integrability of the backward diffusion equation in a compact Riemannian

space, Nagoya Math. J. vol. 3 (1951) pp. 1^ (to be referred to as [III]).

* Some properties of the eigenfunctions of the Laplace operator on Riemannian mani-

folds, Canadian Journal of Mathematics vol. 1 (1949) pp. 242-256.
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Proof. We introduce the normal coordinates y" of Q = (xl, ■ • ■, xm)

in the vicinity of P:

(2.5) y=(T(P,Q))l>H— )      .
\ dr /Q=p

Let

(2.6) dr2 = ßij(y)dyidy'\

We have the well known formulae

(2.7) T(P,Q)=ßij(0)yiy',       ßij(y)? = ßij(0)y'.

By virtue of (2.7), the operator

(2.8) A = Ay = j8«(y) —— + a*(y) — + e(y),
dy'dy1 dy*

0S«(y)) = (ftKy))-»,

when applied to the function/(r, y), where V is considered as a func-

tion of y, may be written as follows:

d2f 32/ df
(2.9) 4»/ = 4r — + 4y»-— + M — +N(f),

1 dT2 dTdy ÓT

where

d2T dT
M = ßV —r— + a*'—■ = 2m + 0(y),

dy*dy' dy*

d2f df

dy*dy> dy*

The differentiations in Ayf and N(f) are to be performed as if V and

y are independent variables. Hence we have

- AvHk .£-!.(*_ T)i-2-m/2 exp (_ ——)
<_g       4 \     4(i - t)/

» /       r    \ (   dm
+ g (, _,).-.-, exp^-__){y_

+ — «,-- A7(m,-_i)>

+ (< - r)*-""2 exp (-       _    j #(«»),
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where w_i = 0 and hence N(u^i) =0. Therefore, since

d X / r     \
-_a._ g (,-,)— exp(-—-)

/- m                 r     \
■Ui  —-+* + --r),

\   2 4(i - t)/

(2.K fi2_

we obtain Lemma 1 if the Mi are successively so chosen that

dui      /— m M\
-+ (-—+i + —)i

ây"      \   2 4/

"•(-P. (?) being infinitely differentiable in the vicinity of Q=P with

m_i = 0 and Wo(P. P) =1. Such «,- may be determined, in view of the

order relation

(2.11) M = 2m + 0(y).

For this purpose, put y* = rfs and transform (2.10) into ordinary dif-

ferential equations in 5 containing the parameters 77. The equations

are integrated by

(C     / — m     M\

Ui(P, Q) = UoS~*  I     Si-1Mo_1iV(Mi_i)áí (i = 1, • • • , k).
Jo

Remark. By (2.9) and (2.10), we have

(2 13)    AqUo{P' Q)T{P' o)"""0'2 = N^P' ®)T{P> QY2~m)l\ nt = 3,

AQUo(P, Q) log T(P, Q) = N(uo(P, Q)) log T(P, Q),    m = 2.

We have thus obtained the parametrix for the elliptic differential

operator A.

3. The proof of Theorem 2'. Let e=0 in the operator A and let

1 rl2

(A'h)(x) = ————((g(x))iiW(x)h{x))
(g(x))1'2   dxldx>

(3.1) VSV

+ TTTTTi 77 (-(«(*)) 1/,fll(*)*(*))
(g(x))1'2 dx*

be the formally adjoint operator of A. Let Li(R) be the Banach space

of the totality of the functions h(x) integrable with respect to dx in
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R, metrized by the norm ||ä|| =/b| h(x) | dx. D is a dense linear subset

of Li(R). We take the operator A' to be an additive operator defined

on DQLi(R) into Li(R), and let Ä' be the smallest closed extension

of the operator A'. Then4 there exists a uniquely determined one-

parameter semi-group6 of linear operators Tt on Li(R) into Li(R)

satisfying the conditions

TtT, = Tt+, (t, s) ¡g 0), To = the identity,

strong lim Tth = Thh   for h E Li(R),

(3.2)
(Tth)(x) is non-negative and \\T,h\\ = \\h\\ when h(x) is

non-negative,

Tt+ih - Tth
dtTth = strong lim-= A'Tth for h in the domain

5-H) 5

D' of the operator Ä',

if and only if the hypothesis of Theorem 2' is satisfied.

We thus have to show that the function h(x, t) = (Tth)(x) is equiva-

lent (in the sense to be explained below) to a function which is con-

tinuously differentiable once in t and twice in x.

For this purpose we prepare two lemmas.

Lemma 2. Let f(x, t) be an infinitely differentiable function which

vanishes outside a compact coordinate neighborhood of P. Then

f Ky, t)f(y, t)dy

(3.3) =   f h(y, 0)/(y, 0)dy
J R

+ f'dTJ {dT*(y*T)f(y' t) + Ky' t) ^îr)dy'

Proof. By (3.2), h(y, r) is strongly differentiable in t with the dif-

ferential quotient A¿h(y, r). Hence h(y, r)f(y, t) is weakly differ-

4 See [II ]. Cf. also [l]. The hypothesis is surely satisfied when R is a connected

domain in m-dimensional Euclidean space whose boundary lies entirely in the com-

pact part of the space and when, moreover, the operator A is the usual Laplacian.

See K. Yosida, A theorem of Liouville's type for meson equation, Proc. Imp. Acad.

Tokyo vol. 27 (1951) pp. 214-215.
6 E. Hille, Functional analysis and semi-groups, New York, 1948. Cf. also K.

Yosida, On the differentiability and the representation of one-parameter semi-group of

linear operators, Journal of the Mathematical Society of Japan vol. 1 (1948) pp. 15-21.
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entiable in r with the differential quotient

-/                  3/(y, t)
f(y, r)Avh(y, r) +-—— h(y, t)

which is strongly continuous in r. Thus, by integration, we obtain

(3.3).

Lemma 3. We have

f Ky, t)f(y, t)dy =  f h(y, 0)f(y, 0)dy
(3.4)   Jr /*

= X ' dTL {Ky' t) \^dT~ + Avf{y' t))} dy'

Proof. The right-hand side is, by (3.2) and (3.3), equal to

~ fodT L iKy' t) (" ^r~ ~Avfiy' t))

- f(y, r)(drh(y, t) - Ä'vh(y, t))} dy

=    J   Ky, r)f(y, r)dy

+ f   dr f {h(y, r)Ayf(y, r) - f(y, r)Ä'vh(y, r)}dy.
Jo J R

That the second integral on the right-hand side is equal to zero may

be seen by the following argument. Let {hk(y, r)} CD be such that

strong liñudo hk(y, r) =h(y, r), strong lim*^«, Av'hk(y, r) =A¿h(y, r).

The existence of such a sequence {hk(y, r)} is assured by the fact that

h(y, t) —(TTh)(y) is in the domain D' of the operator Ä' which is the

smallest closed extension of the operator A' with the domain D. We

have thus

f {Ky, r)Avf(y, r) - f(y, r)Ä'yh(y, r)}dy
J R

= lim   j   {hk(y, r)Avf(y, t) - f(y, r)A\hk(y, r)}dy.

The right-hand integrals are equal to zero as may be seen by Green's

integral theorem and the fact that f(y, t) vanishes outside a compact

coordinate neighborhood of P.
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After these preliminaries, we may give:

Proof of the Theorem 2'. We shall apply (3.4) to the case when

(3.5) f(y, r) = f(Q, r) = Hk(P, Q, t + t - r)8(P, Q)8(P0, P).

Here Po is an arbitrary point of R, fixed in the following argument,

e is a positive constant, and

(3.6) 8(P, Q) = a(r(P, Q)),

where a(r) denotes an infinitely differentiable function of r satisfying

1 for   r = 2-\

a(r) =   between 0 and 1    for   2_177 < r < 77,

.0 for   r = 77.

We assume that the positive constant 77 is chosen so small that

(3.7) the points Q satisfying 8(P0, P)8(P, Q)>0 are contained in

a compact coordinate neighborhood of P0.

We have thus

f h(Q, t)Hk(P, Q, e)8(Po, P)8(P, Q)dy
J R

(3.8) -  f h(Q, 0)Hk(P, Q, t + e)8(Po, P)8(P, Q)dy
J R

= -  f   dr f h(Q, r)Kk(P, Q, t + e - r)dy,
Jo J R

where

Kh(P, Q,t+e-r)

(3.9) /      d \
= {-yT-Ay (H*(p< Q>l +e - TWp°' pMp> G)).

Let k be taken so large that

— m
(3.10) -+k = 2.

Then, in view of Lemma 1, Kk(P, Q, t+e—r) is, for r(P0, P)^2~1r),

devoid of the singularity even if (t+e—r) =0. We shall next show

that the first term on the left-hand side of (3.8) tends, as e J. 0,

strongly to h(P, t) in the vicinity of P0. This may be proved as fol-

lows. We have, by (3.6) and (3.7),
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f ô(Po, P)dp\ f h(Q, t)Hk(P, Q, e)ô(P, Q)dy
J R \J R

- h(P, t) f Hk(P, Q, e)o(P, Q)dy
J R

UCÇ ( f | KQ, t) - h(P, t) | dp) | Hk(P, Q, e) | dy
*'r(Po.O)á2ii Wr(F0,P)á» /

- ClÍ   '"/(/' KZ + tV% t}  ~  KZ' l) ' dZ)

•exp^-E^)2)^1---^"*.

Here (s1, • • • , zm) and (z*+yl, • ■ • , zm+ym) are the coordinates of

the points P and Q respectively in the coordinate neighborhood of P<>,

defined in (3.7), and Cand G denote suitable positive constants. The

inner integral on the right-hand side converges, when € J, 0, to zero

boundedly by Lebesgue's theorem.

Therefore, there exists a sequence {e,} with €, J. 0 such that

h(P, t) lim   f Hk(P, Q, ei)S(P, Q)dy

(3.11) =  f h(Q,0)Hk(P,Q,t)o(P,Q)dy
J R

-  f   dr f h(Q, r)Kk(P, Q, t - r)dy
Jo J R

almost everywhere with respect to P in the vicinity of Po. Hence, by

(3.10)—(3.11), h(P, t) may be considered to be continuously dif-

ferentiable once in <>0 and twice in P in the vicinity of Po if

lim   I Hk(P, Q, e)5(P, Q)dy is positive and twice continuously
(3.12) «io JB

differentiable in P in the vicinity of Po-

The proof of (3.12) may be obtained as follows. We have

lim   f
tiO    J R

Hk(P, Q, e)8(P, Q)dy

=   lim e-ml2 exp Í-1-\¿y

«JO   Jr(P,Q)Êf V 4e       /
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for any positive constant f. Hence, by putting

(3.13) ds2 = yij(y)dyidyi,       y* - ■»/■?,

we obtain, in view of the arbitrariness of f,

lim   f Hk(P,Q,e)8(P,Q)dy
«JO    J R

(3.14) r        C
= lim       • • • exp (-ßijWmiyiWW ■ • • #m

• lo  J •/-fStwt'Si

= »"'»(tío))1'^^))1'* = »»"(«(wyw-p))1'*.

where

g(P) = det (gij(P))    and   J(P) = det (6iy(P)).

4. The proof of Theorem 1. Let C(R) be the Banach space of the

totality of continuous functions/(¡c) in R, metrized by the norm ||/||

= max, |/(x)|. D is a dense linear subset of C(R). Let e = 0 in the

operator A. We consider this A to be an additive operator defined on

DÇlC(R) intoC(P), and define the smallest closed extensions! of .4.

Then6 there exists a uniquely determined one-parameter semi-group

of linear operators St on C(R) into C(R) satisfying the conditions:

StS. = St+,    (t, s = 0),       So = the identity I,

strong lim Stf = StJ   for   / E C(R),

(4.1)

(Stf)(x) is non-negative and max (Stf)(x) = max f(x) if f(x)
X X

is non-negative

St+sf — Stf      T «,
dtSf = strong lim-—- = AStf for / in the domain D of

Í-K) 8

the operator 4.

Therefore, as in §3, we may prove that/(x, t) =(Stf)(x) may be con-

sidered to be continuously differentiable once in t and twice in x.

Nagoya University

«See [HI].


